A Gamma Analcont Kft. az NKFI-16 program keretében Kavitációs víztisztító berendezést fejlesztett, melyet kombinált biocidos technológiával a degradáció javítására és a fertőtlenítő hatás fokozására.
A bemutatott anyag:
A kavitáció elméletét ismerteti röviden
Egy Venturi kavitációs csatorna matematikai modelljét tárgyalja
A biocidos kezelés eredményeit ismerteti
Bemutatja a megvalósított kombinált víztisztító berendezést.
A kavitációs jelenség:
Az ivó-, és élővizek szennyeződése korunk fő problémája. A kavitáció, mely folyadékok áramlásakor lép fel, egyrészt roncsoló hatást okoz, elsősorban turbinák és hajólapátok esetében, ugyanakkor a jelenség – a nagy energiasűrűség következtében – alkalmassá tehető víztisztítási technológia hasznosítására.
A kavitáció folyadék áramlás során buborékképződéssel, vagy üregformálódással jár akkor, amikor a nyomás lecsökkenésével együtt a folyadék hőmérsékletéhez tartozó telített vízgőz nyomás azonossá válik. A folyadék ekkor forrni kezd, buborékképződés mellett gőz-folyadék fázis keverék alakul ki. A buborékban uralkodó nyomást a buborék mérete és a folyadék- gőz felületén létrejövő feszültség határozza meg.
Ha a buborék összeomlása elmarad, akkor pezsgés és forrás áll elő, ezt gázos illetve gőzös kavitációnak nevezzük, és amíg a gázos kavitációnak nincs, addig a gőzös kavitációnak jelentős roncsoló hatása van.
Ezek közül is jnagy jelentőségű a szuper kavitáció, mely kis kavitációs szám mellett alakul ki a kavitációs csatornában, egy állandó kavitációs üreget képezve.
A kavitációt a dimenzió nélküli kavitációs számmal jellemezzük (Thoma szám), mely a folyadék áramlási sebességétől, a folyadék sűrűségétől és a telítési gőznyomástól függ. A folyadék sebességet a kialakított szűk kavitációs keresztmetszettel vesszük figyelembe.
A kavitáció során képződött gőzbuborék a folyadékban összeomlik, nagyon rövid 10-8 illetve 10-6 sec alatt nagy nyomás és hőmérséklet emelkedés létrehozásával (1000 bar nyomás és 5000 °C hőmérsékletet is elérhetnek ezek az értékek).
Venturi elven működő kavitációs csatorna matematikai modellezése:
A kavitáció jelenségének matematikai módszerekkel történő modellezése egy szabad és nyílt forráskódú szoftverrel (Open Source Field Operation and Manipulation) végeztük. A szimuláció és a modell célja a tervezett geometrián modellezni a gázbuborékok keletkezését.
A modellezést kétdimenziós geometrián mutatjuk be: (A modellezést és a fényképes dokumentációt a KvakLab Kft. készítette).
Venturi geometria
X irányban 500 egyenlő részre, Y irányban 100 egyenlő részre, Z irányban 1 egységnyi vastagságban (2D) bontottuk a rendszert. A cellák száma így 69 425, a pontok száma pedig 109 841.
Az eredményeket az alábbi fénykép dokumentációban illusztráljuk (különböző kavitációs időpontokban a folyadék-gőz arány, a nyomás érték, a sebesség érték és az áramlási kép került bemutatásra).
Kavitációs berendezés tervezése és megvalósítása:
A Gamma Analcont Kft. által megépített víztisztító berendezés két jelenség kombinációjával készült. Egyrészt a kavitációs jelenség roncsoló hatását, másrészt a biocidos kezelés fertőtlenítő hatását alkalmaztuk.
A Venturi méretezése a „Clausius-Clapeyron” képlet felhasználásával történt, átlag szobahőmérséklethez tartozó gőznyomás figyelembe vételével.
A betervezett szivattyú max szállítási teljesítménye 1 400 l/min, melynek 50 %-os szállítási sebességnél kavitációt kell eredményeznie.
A buborékok jobb beoldódásához a rendszert egy ciklonnal egészítettük ki, így a folyadék áramlási útvonala jelentősen megnő. Ez a ciklon egyben tartalmazza a biocidos hatás eléréséhez szükséges réz vagy ezüst kolloid töltetet, mely a kavitáció után még megmaradó baktériumok elpusztítását eredményezi.
A fejlesztett berendezést mobillá tettük, ennek megfelelően önhordó szerkezetet kapott. A rendszer kb 200 liter folyadékkal tölthető fel, és a jellemző csőátmérő DN 50- DN 65.
A fejlesztett berendezést az ELTE Mikrobiológiai Tanszékének közreműködésével aprobáltuk az általuk előkészített szennyezett minták kísérleti vizsgálatával.
A mikrobális élő szennyeződések (alga, stb.) degradációjának vizsgálatát az MTA Sztaki illetve a Duna Kutató Intézet, valamint az ELTE Mikrobiológiai Tanszék bevonásával végeztük.
Felhasznált irodalom:
Könözsi László – Kavitációs áramlások szimulációja (szakirodalom 2000 Miskolc)
A Promptov, AVAliesin szennyvízkezelés kavitációval (2017 Tambov)
Németh Zoltán kavitációs folyamatok szakdolgozat (BME 2018)
A publikált szakcikk az alábbi pályázati programhoz kapcsolódott:
KFI-16-1-216-0344 Innovatív víztartósítási és biológiai szennyezettség mentesítési eljárás kutatása, egyedi kavitációs berendezések kifejlesztése a technológiai vízek, ívóvizek és hajók ballasztvízeinek tisztítása érdekében.
További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!