Connect with us

Mozgásban

BYD SEAL: Megérkezett a Tesla Model 3 kínai konkurenciája!

BYD SEAL elektromos autó Schiller Autó

A BYD tavaly bejelentette, hogy Magyarországon is elérhetővé teszi az autóit. Az elmúlt években a kínai EV-k előretörését láthattuk a nyugati piacokon is, és látszik, hogy a csúcstechnológiás, ár-érték arányban is kiemelkedő villanyautók bizony meg tudják szorongatni a nyugati gyártókat. Remek példa erre a BYD SEAL sportszedán, amely méltó kihívója a Tesla Model 3-nak. Mit is érdemes tudni erről az impozáns járgányról?

Éllovas az éllovasok között

Ahhoz, hogy tisztán lássuk a SEAL kvalitásait, érdemes első körben egy pillantást vetni a BYD-re magára. A BYD név (magyar kiejtés: bí-váj-dí), bár kínai eredetű, a „Build Your Dreams” szlogennel lett felöltöztetve, amely egyébként több autójuk hátulján is ott virít. Lássuk mit érdemes tudni a vállalatról, amely a jelenleg is egyre dominánsabb kínai EV-szegmens egyik, ha nem legnagyobb szereplője:

  • 1995-ben indultak, ehhez képest 40 országban van leányvállalatuk.
  • Nagyságrendileg 300 ezer embert foglalkoztatnak.
  • Piaci kapitalizáció alapján a világ második(!) legnagyobb elektromos járműveket gyártó vállalata.
  • EV-k mellett gyártanak IoT eszközöket, napelemeket, tárolórendszereket, elektronikai megoldásokat is.
  • A világ egyik legnagyobb akkumulátorgyártó cége, amely innovációban is éllovas.
  • Néhány alkatrész kivételével (gumi, szélvédő) mindent házon belül gyártanak le a mikrochipektől kezdve a karosszérián át az elektromotorig.

BYD SEAL autó

Ezt tudja a BYD SEAL

Most, hogy némi képet kaptunk a léptékről, térjünk is át a BYD SEAL sportszedánra! Miben egyedi ez az autó? Nos, kezdjük azzal, hogy gyönyörű. Ezt többek között annak köszönheti, hogy a BYD leigazolta a német designzsenit, Wolfgang Eggert, aki az összes autó formatervezésének fő motorja volt. Látszik: a SEAL-re öröm ránézni!

Ezzel együtt természetesen teljesítményben is felveszi a versenyt a Tesla Model 3-mal. Az erősebb kivitelű SEAL két motorja együtt 530 lóerőt tud, amely 3,8 másodperc alatt repíti fel 100 km/órára. Az akkumulátor pedig a megbízhatóságáról és nagyon alacsony degradációjáról, illetve innovatív kialakításáról ismert Blade, amit egyedülálló módon szerkezeti elemként építettek be a SEAL-be, növelve a szedán torziós rigiditását. A 82,5 kWh-s akkucsomag 570 km-es WLTP-hatótávnak feleltethető meg, amely a hosszabb utazásokhoz is bőven elég.

Persze belül is fantasztikus autó a SEAL. Hatalmas, 15,6 colos forgatható kijelző, panorámatető, fantasztikus hangrendszer… Egy szó mint száz, a Tesla Model 3 méltó kihívójára akadt!

Immár a Schiller Autó Család Zrt-nél is!

Aki követte a híreket, értesülhetett róla, hogy két versenytársát követően harmadikként a Schiller Autó Család Zrt. is partneri megállapodást kötött a BYD-val. Az immár majdnem 30 éve a magyar piacon tevékenykedő családi vállalkozás január 11-én írta alá a megállapodást, és február 1-jén nyitotta meg a BYD Schiller autókereskedést Budapesten. (A márkakereskedéshez természetesen BYD márkaszerviz is társul.) És természetesen a SEAL-t is forgalmazzák: akit érdekel ez a lenyűgöző sportszedán, természetesen kipróbálhatja!


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Mozgásban

Bridgestone abroncsokon hasít az új Porsche Macan Electric és Panamera

A Bridgestone-t választotta a Porsche, hogy egyedi gumiabroncsokat fejlesszen az új Macan Electric és Panamera modelljeihez.

Mostantól mindkét jármű egyedi tervezésű Bridgestone Potenza Sport ultranagy teljesítményű gumiabroncsokkal kapható. A Porsche harmadik generációs sportos luxusszedánja, a Panamera személyre szabott Bridgestone Blizzak LM005 abroncsokkal is felszerelhető – ez a Bridgestone első téli gyári első szerelése a neves autómárka számára.

„A Porsche Cayenne-en való együttműködésünk után új utat nyitunk partnerségünkben, hogy olyan prémium gumiabroncsokat kínáljunk, amelyek hozzájárulnak az új Porsche modellek vezetési élményének fokozásához”

– nyilatkozta Steven De Bock, a Bridgestone EMEA régiójának OE alelnöke. „Két „első alkalmat” is ünnepelhetünk – a Panamerához tervezett Bridgestone OE (eredeti gyári felszerelés) abroncsot, valamint az első, kifejezetten elektromos Porsche modell számára fejlesztett abroncsunkat a Macan Electrichez. Izgalmas bemutatni, hogy képesek vagyunk olyan prémium felszerelések széles választékát biztosítani, amelyek segítenek a Porschét vezetőknek abban hogy a legtöbbet hozzák ki ebből a két hihetetlen, ugyanakkor nagyon is különböző autóból.”

Porsche-teljesítmény növelése az első teljesen elektromos SUV-jában

A Porsche Macan Electric egyedi Potenza Sport gumiabroncsa olyan futófelületet és keverékkialakítást alkalmaz, amely fokozza a jármű dinamikus sportos teljesítményét, miközben képes kezelni az elektromos városi szabadidő-terepjáró (SUV) nagy súlyát és nyomatékát. A Bridgestone zászlóshajójának számító, ultranagy teljesítményű gumiabroncsa a Macan Electric egyedi követelményeihez igazítva maximalizálja a kezelhetőséget száraz és nedves úton, valamint nagy sebességnél egyaránt. Mindez a maximalizált fékezési teljesítmény és kényelem, valamint a jármű mintegy 600 km-es hatótávolságának támogatása érdekében optimalizált gördülési ellenállás mellett valósul meg.

A teljesítménybeli előnyöket az ENLITEN technológia teszi lehetővé. Az ENLITEN a Bridgestone következő generációs technológiai platformja, amelyet úgy terveztek, hogy kompromisszumok nélküli teljesítményt nyújtson, a fenntarthatósági jellemzők fokozására összpontosítva. A Macan Electric Európában kifejlesztett és gyártott egyedi abroncsai világszerte hatféle változatban, 20”, 21” és 22” méretben kaphatók.

Egész évben a Porsche Panamera vezetőinek szolgálatában

A Bridgestone két egyedi abroncsmegoldással látta el a Porsche Panamera vezetőit, hogy javítsa járművük teljesítményét az évszakok során. A Porsche Panamera 21”-os Bridgestone Potenza Sport abroncsait az ENLITEN technológiával tervezték, amely fokozza a jármű sportos vezetési tulajdonságait és a vezető kényelmét, miközben alacsony gördülési ellenállást biztosít az energiahatékonyság érdekében. A Panamera testre szabott Potenza Sport ultranagy teljesítményű abroncsai olyan mintázati kialakítást és anyagösszetételt alkalmaznak, amely maximalizálja a száraz és nedves útfelületen nyújtott kezelhetőséget, valamint a nagy sebességnél mutatott teljesítményt.

A Panamera egyedi 20”-os Bridgestone Blizzak LM005 téli felszerelése olyan mintázatot alkalmaz, amely maximalizálja a száraz, nedves és havas kezelhetőséget és fokozza az autó teljesítményét téli körülmények között. Mindezeket az egyedi tervezésű abroncsokat Európában tervezik és gyártják.

Valódi hatás, virtuálisan kifejlesztve

Mindkét projekt fejlesztése során a Bridgestone innovatív virtuális gumiabroncs-fejlesztési technológiáját alkalmazták. A technológia javítja a fejlesztési folyamat hatékonyságát és fenntarthatóságát – a gyári első szerelések fejlesztési szakaszában a nyersanyagfogyasztás és a CO2-kibocsátás akár 60 százalékos csökkenését is eredményezi.

A Bridgestone virtuális abroncsfejlesztése kulcsfontosságú volt a Porsche Macan Electric és a Panamera esetében a Porsche által támasztott követelmények elérésében. A technológiát különösen a testre szabott gumiabroncsok száraz fékezési képességeinek javítására és a járművek fékrendszeréhez való megfelelő illeszkedés biztosítására használták. A virtuális abroncsfejlesztés hozzájárult ahhoz, hogy a Macan Electric dinamikus, sportos viselkedése párosuljon a SUV elektromos jármű nagy tömegével és nyomatékával, és így nagy sebességnél is magas szintű stabilitást biztosítson.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Önvezető könnyű páncélvédettségű járművet fejlesztett a Széchenyi István Egyetem és a Gamma Zrt.

Könnyű páncélvédettségű terepjáró bázisjárműre fejlesztett önvezető és távirányítási funkciókat a győri Széchenyi István Egyetem.

A hazai védelmi ipar meghatározó gyártójával, a Gamma Zrt.-vel közösen kialakított, hazánkban egyedülálló katonai és katasztrófavédelmi célú járművet az intézmény Járműipari Kutatóközpontjának munkatársai látták el ön- és távvezérlést lehetővé tevő technológiával.

A Széchenyi István Egyetem és a budapesti Gamma Zrt., a hazai védelmi ipar meghatározó gyártója sikeresen valósította meg közös projektjét, egy ön- és távvezérlésre alkalmas könnyű páncélvédettségű terepjáró bázisjármű fejlesztését. Az újítás igénye a meglévő, ballisztikai védelemmel rendelkező járművek tesztelése, képességeinek demonstrálása során merült fel az élő erő védelme és az emberierőforrás-szükséglet csökkentése érdekében.

Az innovációs pályázat fő célkitűzése egy olyan nehéz terepi viszonyok között is alkalmazható, fizikai behatásokkal szemben védelmet nyújtó alapjármű megépítése volt, amely biztosítja az önvezérléshez szükséges rendszerintegráció alapvető feltételeit, valamint a többcélú alkalmazást. A megvalósult szimpla fülkés, félplatós, 4×4 hajtásképletű járműhöz illeszkedő, többfunkciós feladatellátást támogató cserefelépítmény-rendszert is kidolgoztak a szakemberek, amely lehetővé teszi a különböző felhasználói igényeknek megfelelő, különleges szakmai képességekkel rendelkező felépítmények fejlesztését.

„Először azon dolgoztunk, hogy a jármű mozgása, így a pedálrendszer és a kormány távolról is irányítható legyen. Ebbe a munkába az egyetem Digitális Fejlesztési Központja is bekapcsolódott, hogy zökkenőmentesen, rövid reakcióidővel működjön a kamerakép átvitele, amihez 5G- és wifihálózatot használtunk” – vázolta fel Kőrös Péter, a Széchenyi István Egyetem Járműipari Kutatóközpontjának (JKK) Autonóm Közlekedési Rendszerek operatív vezetője. Kiemelte, hogy a távvezérlés kezelői felületét, irányítói programjait és a digitális műszerfallal ellátott operátori állást mind a központ munkatársai valósították meg.

A szakember elárulta, hogy az autonóm működési mechanizmus beépítése nem volt újdonság a kollégáknak, hiszen a JKK egyik fő kutatási profilját az önvezető járművek adják. „Az egyetlen ismeretlen tényező a méret volt, hiszen 16-18 tonnás páncélozott járműre még nem fejlesztettünk ilyen funkciót” – fejtette ki. „Ebben az irányítási formában GPS-technológia segítségével előre felmérjük a bejárandó terepet, amelyen a jármű utána önállóan végig tud menni. Ha bármilyen akadály kerül az útjába, akkor a jármű vagy megáll, vagy kikerülő manővert végez el attól függően, hogy mit programoztunk be neki” – részletezte Kőrös Péter.

Eredetileg határvédelmi és felderítő funkciók ellátására alkalmas jármű kidolgozása volt a fő fókusz, de azóta már számos más területről – például tűzoltóságról – is érdeklődtek az innováció iránt. „A szenzorokat és a távközléshez szükséges eszközöket a járműtestre szereltük fel, a hátsó felépítmény pedig cserélhető, ezért bármilyen funkciót elláthat a mérésektől a mentéseken át a hadi alkalmazásig. Az autonóm és távvezérlés pedig Magyarországon egyedülálló módon funkciótól és felépítménytől függetlenül működik” – húzta alá a mérnök. A céggel történő együttműködésről elmondta: „Szakmailag és emberileg is kiváló csapat dolgozott a projekten. A fejlesztés nem valósulhatott volna meg Ocskay Gábor, a Gamma Zrt. Különleges Jármű Divíziójának egykori vezetője nélkül, aki sajnos a közös munka végeredményét már nem élhette meg.”

A konzorciumi tagok a projekt során a Gamma Zrt. Komondor járműcsaládjának hatodik, új típusát (RDO-3927) alkották meg. Dr. Zsitnyányi Attila, a vállalat vezérigazgatója elmondta, a Széchenyi István Egyetemmel sikerre vitt pályázat további fejlesztéseket is inspirált, a távirányíthatóságot és az önvezető funkciót pedig akár más járműveikre is kiterjesztenék.

„Magyarország egyetlen könnyű páncélvédettségű bázisjármű-fejlesztőjének és -gyártójának lenni komoly felelősséggel jár, ezért nyitottan állunk az olyan jövőbe mutató kutatási együttműködésekhez, mint amilyen a győri egyetemmel is megvalósult. A projekten dolgozó kutatóközpont, illetve az egyetem vezetésének hozzáállását, munkabírását már a pályázat készítése során csodáltam. Kiváló munkát végeztek végig, hihetetlenül rövid reakcióidőkkel. Öröm volt velük együtt dolgozni” – jelentette ki a vezérigazgató. Hozzátette: a kiváló tapasztalatoknak köszönhetően a jövőben is folytatnák a partnerséget az intézménnyel.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Mozgásban

A HUN-REN SZTAKI kutatócsapata önvezető járműveket tanított biztonságos manőverezésre

Egy 2022-ben indult, magyar-vietnámi közös, kutatási projektben hibrid tanulási módszerrel biztonságos vészhelyzeti manőverezésre tanítottak önvezető járműveket a HUN-REN SZTAKI-nál.

A Vészhelyzeti pályatervezés kooperálni képes autonóm járművek számára című programra három éve 69 546 489 forintnyi, száz százalékban vissza nem térintendő támogatást nyert el a HUN-REN SZTAKI nevében pályázó, Gáspár Péter professzor által vezetett kutatócsoport. A programban kezdetektől fogva közreműködtek a vietnámi Közlekedési és Kommunikációs Egyetem (UTC) kutatói is. A Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH) által támogatott 2019-2.1.12-TÉT_VN-2020-00003 azonosító számú projekt kitűzött feladatai között szerepelt egy olyan irányítási rendszer kidolgozása, mellyel az egymással és a környezeti elemekkel is kommunikáló autonóm jármű vészhelyzet esetén biztonságos elkerülő manőverezést tud végrehajtani. A projekt soárn mindezt nem csak a szimulációs térben, hanem valós környezetben is  kipróbálhatták a kutatók, a zalaegerszegi ZalaZONE tesztpályán egy fejlesztési célokra átépített Lexus RX 450h típusú önvezető járművön .

A gépjárművek menetstabilitásának megőrzése régóta kutatott téma az irányításelméletben. A jelenleg forgalomban lévő rendszerek a járművezetőt támogatva avatkoznak be, amennyiben a jármű mozgásállapota megköveteli. Ezek a rendszerek a jármű belső állapotváltozóit felhasználva, klasszikus irányítási módszerekkel, elsősorban a kerékfékeket aktuálva stabilizálják a járművet egy esetleges megcsúszás során. Az egyre magasabb automatizáltsági szintű funkciók megkövetelik, hogy a jármű irányítórendszere képes legyen a környezet statikus és dinamikus objektumait is figyelembe véve megtervezni jármű trajektóriáját. Az ehhez szükséges környezetérzékelés alapját különböző elven működő rendszerek adják, mint például az ultrahang, a radar, illetve a lidar, esetleg a gépi látáson alapuló kamerás rendszerek. Ezen rendszerek információinak egységes kiértékelését egy magas szintű környezetérzékelő rendszer végzi, amelyre alapozva az optimális járműpálya meghatározható az autonóm jármű számára.

A napjainkban egyre inkább kutatási fókuszba kerülő autonóm járművek fejlesztésének egyik sarokköve, hogy a jármű irányítórendszere képes legyen a környezet statikus –  mint amilyen egy jelzőlámpa – és dinamikus,  – mint például egy járókelő – objektumait is figyelembe véve megtervezni jármű pályáját. A jármű mozgási pályájának tervezése tulajdonképpen egy optimalizálási probléma megoldása, melynek során mindig figyelembe kell venni a trajektória dinamikai megvalósíthatóságát, azaz a menetstabilitását garantálását.

„A kutatás célja olyan módszerek kifejlesztése volt, amelyek segítségével az autonóm járművek vészhelyzeti manővereket tudnak végrehajtani gépi tanulás alkalmazásával. Ezt egy valós vészhelyzeti szituációban teszteltük, hogy lássuk, hogyan működik a gyakorlatban”

– mondta Gáspár Péter, a kutatás vezetője.

„A kutatás eredményeként olyan irányítórendszert dolgoztunk ki, ami a gépi tanulás és a hagyományos irányítástechnikai megoldások kombinációjára épül. Ez a rendszer képes figyelembe venni a környezeti információkat, és biztosítani a jármű biztonságos pályájának megtervezését és végrehajtását. A rendszer felső szintje egy olyan döntéshozatali és pályatervezési folyamat, amely megerősítéses tanulásra épít, míg az alsó szint a tervezett pálya gyors értékelésére szolgál. Itt a legfontosabb tényező a dinamikai megvalósíthatóság, amely figyelembe veszi például a beavatkozókra vonatkozó korlátozásokat és a jármű menetstabilitását”

fejtette ki részletesen a kutató Professzor.

A kutatás során a gépi tanulásra épülő irányítást úgy hangolták, hogy figyelembe vegye a hagyományos irányítástechnikai módszerek robusztusságát is. „Ennek a munkának köszönhetően az autonóm jármű képes megőrizni a stabilitását akkor is, ha váratlan változások lépnek fel a környezetben vagy a jármű dinamikájában” – egészítette ki Mihály András, a projekten dolgozó kutató, majd hozzátette:

A kutatásban kifejlesztett vészhelyzeti pályatervezési és járműirányítási megoldásokat az automatizált, felszerelt Lexus RX 450h tesztjárművön teszteltéük a ZalaZone tesztpályán, különböző vészhelyzeti manőverek végrehajtásával.”

„A projekt során egy kísérleti fejlesztés zajlott, amelyben a járműdinamikát, a szenzoradatok egyesítését és a gépi tanulással támogatott járműirányítást kombinálják, mindeközben figyelembe veszik a járműipari fejlesztési folyamatokat is”

összegezte Gáspár Péter, a kutatás vezetője.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Friss