Connect with us

Ipar

A szabadionnal telített közegben működő energiacella fejlesztés eredményeinek bemutatása

energiacella max construct

A projekt a „Vállalatok K+F+I tevékenységének támogatása kombinált hiteltermék keretében” című és GINOP-2.1.2-8.1.4-16 azonosítószámú pályázati kiírás támogatásával valósult meg.

Összegzés

A Max-Construct Kft fejlesztésének végtermékeként egy olyan energia cella, került kifejlesztésre, ami független egyéb más energia előállító és szállító technológiáktól, a folyamat elindításához és stabil hosszú távú működéséhez nincs szükség egyéb külső energia vagy energiahordozó bevonására, napi 24 órában működik, valós alternatívát nyújt a tengerpartok mellett élőknek napelemes és szélgenerátor technológiák mellett a villamos energia előállítására.

A prototípus feszültségszintje meghaladja a 15V-ot és a cella által leadott áramerősség rövid távon akár 20A-t, hosszú távon pedig min. 6-A-t tud előállítani.

A prototípus az ún. katódelrendezésen alapuló energiacella, mely tartalmaz katódanyag térrészt meghatározó, elektrolit által átjárható katódfalat tartalmazó katódházat, valamint a katódanyag térrészbe első végrészével benyúló, második végrészével a katódanyag térrészen kívülre nyúló, szénből lévő katódelemet és a katódanyag térrészben 2-5 mm átmérőjű, hengeres alakú, szénből extrudált katódszemcséket. Az innovatív eljárás részét képezi még a katódelrendezést tartalmazó energiacella, az energiacellát tartalmazó hidrogéngáz-feldolgozó elrendezés és az energiacella alkalmazása elektrolitként tengervizet használva.

A fejlesztés során speciális elektronikát is fejlesztettünk az energiacellából nyert villamos energia akkumulátorok töltésére alkalmassá tételére.

Az energiacella működési elve a galvánelem hatáson alapul, melynek értelmében két elektród között (anód és katód) elektrolit közegben elektromos áram indukálódik és az elektrolitot maga a sós tengervíz adja.

Berendezésünk működési elvének és működésének megértéséhez néhány kémiai és fizikai alapelv a hétköznapinál valamivel mélyebb ismerete szükséges.

Ion, ionizáció:

A Wikipédia meghatározásai szerint:

„Az ion: Olyan atom vagy molekula (atomcsoport), mely elektromos töltéssel rendelkezik. A negatív töltésű ion, más néven anion olyan atom vagy molekula, melynek egy vagy több elektrontöbblete van, a kation pedig pozitív töltésű ion, amiben egy vagy több elektronhiány van, mint az eredeti részecskében. A folyamat, mely során létrejönnek az ionok, az ionizáció. Az ionizált atomokat vagy atomcsoportokat úgy jelölik, hogy az atom vagy molekula fölött jelölik az elvesztett vagy szerzett elektronok számát (kivéve, ha egy van, akkor nem jelölik), és a töltést (+ vagy −). Példa: H+, O2−.

Egyszerű atomok esetén a fémek legtöbbször kationokat hoznak létre, a nemfémek anionokat, például a nátrium Na+ kationt, míg a klór Cl (klorid) aniont hoz létre.

Bonyolultabb szerves molekulák ikerionos állapotba is kerülhetnek, ekkor egyszerre anionos és kationos tulajdonságúak.”

Ionizációs energia:

„Az az energiamennyiség, mely ahhoz szükséges, hogy kationt hozzunk létre egy semlegesebb (nem feltétlenül semleges) töltésű atomból, az ionizációs energia. Általánosabban egy atom n-edik ionizációs energiája az az energiamennyiség, mely ahhoz szükséges, hogy az n-edik elektront leszakítsuk az atomról, miután az előző n–1-et már leszakítottuk.”

Minden sikeres elektronleszakítás során a következő ionizációs fázishoz szükséges energia mennyisége növekszik. Rendkívüli a növekedés, amennyiben egy adott atompálya kiürül, és a következőről kell leszakítani az új elektront. Ezen okból az atomok igyekszenek úgy elrendeződni, hogy telített atompályáik maradjanak. Emiatt például a nátriumból létrejövő Na+-t gyakran megtaláljuk, de a Na2+-t nem, a nagy ionizációs energiaigény miatt. Ugyanígy a magnézium Mg2+ formája gyakori, míg Mg3+ formája nem, és az alumíniumnak csak az Al3+ formája fordul elő a természetben.”

Elektronaffinitás:

„Az az energia, amely egy atom esetében egy elektron befogásához szükséges. Az elektronaffinitás halogénelemek csoportján belül a rendszám növekedésével csökken (kivétel a fluor, amelynek az elektronaffinitása valamivel kisebb, mint a klóré). Két kapcsolódó atom közül az képes erősebben magához szívni a kötő elektronpárt, amelyiknek nagyobb az elektronaffinitása (vagyis anionná alakulásakor nagyobb energia szabadul fel). Ennek a fogalomnak értelmezéséhez abból indulhatunk ki, hogy ha a kapcsolódó A és B atomok elektronaffinitása egyenlő, az A,B- kötés energia az A,A és B,B kapcsolatok energiáinak számtani középértéke.”

Mit értünk szabadionnal telített közegnek:

Míg a fémekben az elektromos töltéssel rendelkező atomokat vagy molekulákat (atomcsoportokat) elektronoknak hívjuk addig ugyan ezeket a molekulákat folyadékban vizsgálva ionoknak nevezzük. Az elektronok áramlásának kialakulása a különböző anyagok elektród potenciálszintjén alapul.

Fejlesztésünk során létrehozott új termék, egy már ismert műszaki-tudományos eredmény felhasználásával készül el. Az IMK Laboratórium Kft. által 2015.11.16-án P15 00545 számon bejegyzett szabadalmának részleges alkalmazásával, egy olyan energiacellát fejlesztünk ki, mely szabad ionokkal telített folyadék közegben az anód/katód pár között elektronok áramlását biztosítja.

Hasonlóan a galvánelemekhez a fém elektróda és az elektrolit között potenciálkülönbség alakul ki. Az anód fémből, elektronok hátra hagyásával pozitív fémionok mennek az oldatba, tehát a fém töltése az oldathoz képest negatív lesz. Az oldatból, elektronok hátra hagyásával pozitív ionok válnak ki a katód felületén, tehát annak töltése az oldathoz képest pozitív lesz.

Galvánelem:

„A galvánelem két elektródból (fél cellából) áll. A legegyszerűbb galvánelem az, amikor a két tiszta fémelektród saját ionjait tartalmazó sóoldatba merül. A sóoldatban a bemerülő fém oxidált, pozitív töltésű kationjai és az ezeket semlegesítő anionok találhatók. Az elektródok a fémet két különböző oxidációs állapotban tartalmazzák. A lejátszódó redoxireakciót a konvenció szerint a redukció irányában írjuk fel. 

Bagdadi elemek i.e. 250 és i.sz. 250 között

Vitatott ugyan, de különböző elméletek és megközelítések arra engednek következtetni, hogy már időszámításunk hajnalán létezhetett a technológia alapja. Bagdadi elemekként azokra a mezopotámiai vázákra szoktak utalni, amelyekkel egyes alternatív történészek szerint, elektromos áramot lehetett létrehozni.

A potenciálkülönbség nagysága akkora, hogy megakadályozza a további elektron átadást, így a kialakuló feszültség mértékét az anód-katód közötti elektródpotenciál egyértelműen maximálja.

Csányi féle galvánelem 1903

Egy egyszerű galvánelem az alábbi módon állítható elő: egy higított kénsavval töltött üvegedénybe egy-egy cink- és rézelektródát helyezünk el. A rézelektródából (vegyi hatás következtében) elektronok lépnek ki a kénsavba, ezzel pozitív töltésűvé válik. A cinkelektróda felületén ennek fordítottja játszódik le, az elektronok a kénsavból lépnek át, tehát itt elektrontöbblet keletkezik, azaz a cinkelektróda negatív töltésű lesz. Az elektródok töltései kiegyenlítődni igyekeznek, ezért az elektródok között feszültség mérhető, cca. 1 volt, amely a terhelés folyamán lecsökken.

Vagy még egyszerűbben:

a citromban nem csak vitamin van

A fejlesztés folyamata alatt, többféle anód/katód anyagpárosítást és azok különböző kialakítását és elrendezését vizsgáltuk meg, a lehető legnagyobb mértékű feszültségszint elérése érdekében. A célunk az volt, hogy egy olyan sósvízben (mint elektrolitban) működő energiacellát hozzunk létre, mely feszültségszintje meghaladja a 15 volt feszültséget, ezzel együtt rövid távon, akár 20 ampert, hosszú távon pedig stabilan, minimum 6 amper áramerősséget legyen képes előállítani.

az optimális anyagpárosítás (magnézium/szén) az elektromos kapcsolat kialakítását biztosító aljzatba szerelve

Szabad ionnal telített közegben működő energiacella fejlesztése során három különböző fejlesztési területre koncentráltunk.

1./ Energiacella fejlesztése:

Optimális anód/katód anyagok és azok elrendezésének kikísérletezése. Az anód/katód párosításánál a legmagasabb elektródpotenciálokat a szén/magnézium (anód pozitív/katód negatív) párosítása során voltunk képesek előállítani.

anód/katód anyag méret és elhelyezés: a magnézium rúd és a kék kosárban a szénrúd

2./ Elektronika fejlesztése:

Az energia cella által előállított egyenáram stabilizálása, a gyakorlati életben is használható feszültségszintek és áramerősségek biztosítása céljából. töltésvezérlés. Az elektronika fejlesztésénél kipróbáltunk néhány már a kereskedelemben kapható és kifogástalan működésre képes töltésvezérlő egységet, de a speciális körülményeket és az egység stabil működésének érdekében támasztott saját követelményeinknek egyik sem felelt meg.

Annak érdekében, hogy az extrém körülményeknek, széles felhasználási igényeknek megfelelő töltésvezérlést építhessünk be egységünkbe, saját fejlesztésű vezérlést kellett építeni és a cellákkal együtt folyamatosan tesztelve, tökéletesíteni.

saját fejlesztésű elektronika és vezérlés

A szabad ionnal telített közegben működő energiacella egység, mint energiatermelő blokk, a kísérleti fázisban, összeszerelés közben. A kilenc egységet tartalmazó energiablokk egységei sorba kötve.

energiacella blokk

Tesztek és a kísérleti folyamat: fizikai kísérletek során sikerült kifejleszteni azt a sósvízben (mint elektrolitban) működő energiacellát, mely feszültségszintje meghaladja a 15 voltot, és rövid távon 20 ampert volt képes leadni, mindezt pedig stabilan és a kísérletek ideje alatt hosszú távon is.

sósvizes kísérleten már átesett egységek

3./ 3D modellezés és tervezés:

A végtermék formai megjelenésének tervezése, különböző változatok kialakítása a várható vevői igények/elvárások feltérképezésével összhangban.

üzemanyagcella magnézium és szénrudainak elhelyezési modellezése 3D technológiával

Az energiacellánk felépítése:

A fejlesztés eredményeként létrehozott, gyártásra kész egység:

Energiacellák a tengervíz által átjárható dobozolásban

Egy egység, tartalmaz 9 db energia termelő cellát, maximális kapacitása: 5 V, feszültségen, 1 A áramerősség, 2,5 Watt teljesítménnyel. Az általunk fejlesztett elektronika képes szabványos feszültségszintre emelni a kijövő teljesítményeket, a piacon kapható eszközigényeknek megfelelően például telefontöltéshez 5 V, 1A, vagy egy vitorlás hajó elektromos rendszereinek alap működtetéséhez, 12 V, 2 A, vagy esetleg több egység sorba kötésével elérhető nagyobb teljesítmény is.

A szabad ionnal telített közegben működő energiacella egység alapelvén, a leghatékonyabb anód/katód párosítás ki kísérletezésével, a dimenziók növelésével (energiatermelő felületek). képesek vagyunk háztartási méretű energiacella megépítésére is.

A fejlesztés végeredménye egy olyan áramforrás, ami a tengerek mellett élő népesség számára, függetlenül a fosszilis energiahordozóktól, napsugárzási és szélviszonyoktól, éjjel nappal és a mi a legfontosabb, stabilan működni képes, állandóan alkalmazható energiaforrást biztosít, akár háztartási méretben is

Záró gondolatok

Az elkészült prototípus, és a sorozatgyártás során létrejövő termékek teljes mértékig környezetbarátnak tekinthetők, így hozzájárulnak a fenntartható környezethez. A tengervíz segítségével előállított energia megújulónak minősül, mivel semmilyen fosszilis energiahordozót nem használ a villamos energia előállításához. Nem szennyezik az élővizeket, nincs melléktermék, nincs emisszió.

A fejlesztéssel nem csak adott fogyasztókat lehet stabilan és hosszútávon ellátni villamos árammal, hanem ahol erre a külső körülmények is biztosítottak, nagyobb akkumulátor telepeket, akkumulátor farmokat is lehetne folyamatosan működtetni, ezzel kisebb – nagyobb lakóközösségek energiaellátását biztosítani, természetesen a megfelelő karbantartás mellett.

Az új prototípus révén lehetőség nyílik a tengervizes energiacella további felhasználására különböző termékfejlesztések keretében.

A jövő a megújuló energiaforrások egyre nagyobb arányú hasznosíthatósága felé mutat, amiben ez a termék és a későbbi termékfejlesztések is úttörő szerepet tudnak játszani.

Szerző: Tankó Gábor fejlesztő mérnök


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Ipar

A Messer hosszú távú héliumellátási megállapodást kötött a QatarEnergy-vel

A Messer, a világ legnagyobb magántulajdonban lévő ipari gázgyártó vállalata bejelentette, hogy hosszú távú héliumellátási megállapodást (SPA) írt alá a QatarEnergy-vel.

A szerződés értelmében a Messer évente mintegy hárommillió köbméter nagytisztaságú héliumot vásárol, amelyet a QatarEnergy világszínvonalú, Ras Laffanban működő létesítményeiből szállítanak a vállalat ügyfelei számára világszerte.

A most aláírt szerződés mérföldkő a Messer történetében: ez az első közvetlen, hosszú távú partnerség a QatarEnergy-vel, a világ egyik vezető héliumtermelőjével. Az együttműködés hozzájárul a források diverzifikálásához és az ellátási láncok megerősítéséhez, garantálva, hogy az ügyfelek számára ez a ritka gáz stabilan és kiszámíthatóan rendelkezésre álljon.

Az aláírási ceremónián, amelyen mindkét vállalat felsővezetői részt vettek, Saad Sherida Al-Kaabi, a QatarEnergy elnök-vezérigazgatója így nyilatkozott:

„A Messer elismert szereplő a globális héliumpiacon, széles körű portfólióval és erős piaci jelenléttel. Örömünkre szolgál, hogy közvetlen szállítási szerződést köthettünk a Messer-rel és megbízható partnerként közösen szállíthatjuk ügyfeleinknek a nagytisztaságú héliumot világszerte.”

A hélium kulcsfontosságú alapanyag számos csúcstechnológiai területen és iparágban, többek között az orvosi képalkotásban, az egészségügyi berendezésekben, a félvezetőgyártásban, a kvantumszámítástechnikában, a száloptikai rendszerekben és az űrkutatásban. A Messer nemrégiben felvásárolta az Egyesült Államokban működő egykori Federal Helium Systemet, amellyel megerősítette globális pozícióját a héliumpiacon. A QatarEnergy-vel létrejött megállapodás tovább bővíti a vállalat beszerzési portfólióját és erősíti nemzetközi jelenlétét.

Bernd Eulitz, a Messer SE & Co. KGaA vezérigazgatója így fogalmazott:

„Ez a megállapodás erősíti ügyfeleink bizalmát a folyamatos és kiváló minőségű ellátás iránt, amely elősegíti üzleti tevékenységük és innovációik sikerét. Mindenekelőtt azonban világosan kifejezi elkötelezettségünket ügyfeleink mellett: biztosítjuk számukra a hosszú távú növekedésükhöz nélkülözhetetlen hélium biztonságos és megbízható rendelkezésre állását.”

A QatarEnergy-vel való partnerség újabb mérföldkő a Messer számára a stabil, diverzifikált és globális héliumellátási lánc kiépítésében – támogatva ügyfelei dinamikus fejlődését nemcsak a jelenben, hanem a jövőben is.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

A napenergia szerepe egyre nő a kiskereskedelemben

A kiskereskedelmi szektorban rohamosan nő a megújuló energiaforrások szerepe: a nagy láncok energiahatékonysági beruházásokkal, és helyben termelt zöld árammal igyekeznek csökkenteni karbonlábnyomukat.

A megújuló energiaforrások iránti növekvő igényhez igazodva a SPAR Magyarország tovább bővíti napelemes rendszereit, Nyíregyházán és Székesfehérváron is korszerű, környezetbarát energiaforrást biztosítva áruházai számára. Hazánkban a SPAR a szektorban az elsők között valósított meg napelemes fejlesztéseket és a program folyamatosan bővül.

A legújabb telepítések 2025 első felében, Nyíregyházán, a Tiszavasvári úti szupermarketben, valamint a székesfehérvári Palotai úti üzletben valósultak meg. Mindkét helyszínen 50 kW teljesítményű rendszer kezdte meg működését, amely évente több tízezer kilowattóra energiát képes előállítani. Ennek köszönhetően az érintett boltok villamosenergia fogyasztásának legalább 15%-át váltja ki a megújuló energia.

„A SPAR számára rendkívül fontos, hogy energiafelhasználásunkat hatékonyabbá tegyük és minél nagyobb mértékben támaszkodjunk megújuló forrásokra. A SPAR Magyarország 2024-ben összesen 912 GJ, vagyis 253 256 kWh megújuló villamos energiát használt fel, amely teljes egészében a saját áruházaink tetején telepített napelemes rendszereinkből származott. Minden új beruházásnál arra törekszünk, hogy a napelemek a lehető leghatékonyabban szolgálják ki az adott üzlet villamosenergia-igényét, ezzel is támogatva az energiatudatos működésünket”

– mondta Maczelka Márk, a SPAR Magyarország kommunikációs vezetője.

A SPAR 2020-ban Szegeden indította el napelemes programját, majd 2022-ben Pécsen és Dorogon, 2023-ban Gödön, 2024-ben pedig Dunaföldváron és a pécsi INTERSPAR hipermarketben valósult meg telepítés. A legnagyobb volumenű fejlesztés eddig a pécsi INTERSPAR-ban történt: az ottani rendszer energia tárolóval kombinálva egyhavi energiafogyasztást képes megtakarítani az áruháznak. Az eddigi projektek eredményeként a vállalat éves megújulóenergia-termelése 2024-ben meghaladta a 253 ezer kilowattórát, ami 80 átlagos családi ház éves fogyasztásának felel meg.

A most átadott nyíregyházi és székesfehérvári rendszerekkel a SPAR tovább erősíti azt a törekvését, hogy a jövő áruházai ne csupán modern kereskedelmi terek legyenek, hanem saját energiát is termelő, környezeti szempontból felelős egységek. A vállalat minden új beruházás és felújítás során vizsgálja a napelemes megoldások alkalmazásának lehetőségét, és a következő években további telepítések várhatók.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Ultimaker Secure Line: 3D nyomtatók védelmi ipari célokra

Az Ultimaker, a világ egyik vezető 3D nyomtató gyártója, bemutatta legújabb fejlesztését, a Secure Line termékcsaládot. Az első két modell, az UltiMaker S6 Secure és az S8 Secure, kifejezetten a védelmi szektor, valamint hasonlóan magas adatbiztonsági követelményekkel dolgozó szervezetek igényei szerint készült.

Biztonság kompromisszumok nélkül

Az új nyomtatók célja, hogy az additív gyártást megbízható és mobil eszközzé tegyék a terepen is. Az S6 Secure és S8 Secure ötvözi az ipari szintű teljesítményt a kibertámadások elleni védelemmel, megfelelve a legszigorúbb informatikai előírásoknak.

A készülékek teljesen lekapcsolódnak a hálózatról: nincs Wi-Fi, nincs kamera, és csak USB-alapú, izolált (air-gapped) adatátvitel engedélyezett. Ezzel gyakorlatilag kizárják a kémkedés, az adatlopás vagy a távoli hozzáférés kockázatát.

Főbb biztonsági funkciók:

  • gyárilag telepített, manipulációbiztos firmware
  • titkosított, nyomon követhető fájlkezelés
  • hardveresen védett komponensek
  • teljesen felhőfüggetlen működés

3D nyomtatók a frontvonalon

Az új UltiMaker nyomtatók robusztus felépítésüknek köszönhetően terepi, hajó- vagy mobil környezetben is megbízhatóan használhatók. A honvédelem területén számos alkalmazásban bevethetők, a kutatás-fejlesztéstől a katonai logisztikáig.

Az FDM technológiával készült nyomatok széles anyagpalettából – a rugalmas műanyagoktól a nagyszilárdságú kompozitokig – készülhetnek. Így a sérült gépekhez, járművekhez vagy eszközökhöz szükséges pótalkatrészek akár órák alatt előállíthatók – a helyszínen – csökkentve a leállási időt és az ellátási láncoktól való függést.

Testreszabható, európai gyártás

Az UltiMaker 3D nyomtatóit a NATO több szervezete is használja világszerte. A Secure Line modellek is az európai – hollandiai – gyárban készülnek, szigorú minőségi és adatvédelmi standardok szerint. Ezt a sorozatot kifejezetten a honvédelmi és űripari ügyfelek számára fejlesztették, gyártása korlátozott darabszámban zajlik, testreszabott konfigurációkban. Emellett minden géphez két év UltiMakerCare szolgáltatás jár, amely gyors támogatást biztosít a felhasználóknak, akár bevetés közben is.

Hazai elérhetőség

Az új Secure Line modellek már Magyarországon is elérhetők az UltiMaker hivatalos képviseleténél, az ADMASYS HU-nál. A Secure Line új fejezetet nyit a 3D nyomtatásban: a védelmi szektor számára ipari teljesítményt, teljes adatbiztonságot és gyors helyszíni gyártóképességet kínál. Az S6 Secure és S8 Secure a jövőben kulcsszerepet játszhat abban, hogyan gondolkodunk a kritikus alkatrészek utánpótlásáról.

További részletek: UltiMaker Secure Line


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement
Advertisement
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Advertisement

Friss