Connect with us

Ipar

A szabadionnal telített közegben működő energiacella fejlesztés eredményeinek bemutatása

energiacella max construct

A projekt a „Vállalatok K+F+I tevékenységének támogatása kombinált hiteltermék keretében” című és GINOP-2.1.2-8.1.4-16 azonosítószámú pályázati kiírás támogatásával valósult meg.

Összegzés

A Max-Construct Kft fejlesztésének végtermékeként egy olyan energia cella, került kifejlesztésre, ami független egyéb más energia előállító és szállító technológiáktól, a folyamat elindításához és stabil hosszú távú működéséhez nincs szükség egyéb külső energia vagy energiahordozó bevonására, napi 24 órában működik, valós alternatívát nyújt a tengerpartok mellett élőknek napelemes és szélgenerátor technológiák mellett a villamos energia előállítására.

A prototípus feszültségszintje meghaladja a 15V-ot és a cella által leadott áramerősség rövid távon akár 20A-t, hosszú távon pedig min. 6-A-t tud előállítani.

A prototípus az ún. katódelrendezésen alapuló energiacella, mely tartalmaz katódanyag térrészt meghatározó, elektrolit által átjárható katódfalat tartalmazó katódházat, valamint a katódanyag térrészbe első végrészével benyúló, második végrészével a katódanyag térrészen kívülre nyúló, szénből lévő katódelemet és a katódanyag térrészben 2-5 mm átmérőjű, hengeres alakú, szénből extrudált katódszemcséket. Az innovatív eljárás részét képezi még a katódelrendezést tartalmazó energiacella, az energiacellát tartalmazó hidrogéngáz-feldolgozó elrendezés és az energiacella alkalmazása elektrolitként tengervizet használva.

A fejlesztés során speciális elektronikát is fejlesztettünk az energiacellából nyert villamos energia akkumulátorok töltésére alkalmassá tételére.

Az energiacella működési elve a galvánelem hatáson alapul, melynek értelmében két elektród között (anód és katód) elektrolit közegben elektromos áram indukálódik és az elektrolitot maga a sós tengervíz adja.

Berendezésünk működési elvének és működésének megértéséhez néhány kémiai és fizikai alapelv a hétköznapinál valamivel mélyebb ismerete szükséges.

Ion, ionizáció:

A Wikipédia meghatározásai szerint:

„Az ion: Olyan atom vagy molekula (atomcsoport), mely elektromos töltéssel rendelkezik. A negatív töltésű ion, más néven anion olyan atom vagy molekula, melynek egy vagy több elektrontöbblete van, a kation pedig pozitív töltésű ion, amiben egy vagy több elektronhiány van, mint az eredeti részecskében. A folyamat, mely során létrejönnek az ionok, az ionizáció. Az ionizált atomokat vagy atomcsoportokat úgy jelölik, hogy az atom vagy molekula fölött jelölik az elvesztett vagy szerzett elektronok számát (kivéve, ha egy van, akkor nem jelölik), és a töltést (+ vagy −). Példa: H+, O2−.

Egyszerű atomok esetén a fémek legtöbbször kationokat hoznak létre, a nemfémek anionokat, például a nátrium Na+ kationt, míg a klór Cl (klorid) aniont hoz létre.

Bonyolultabb szerves molekulák ikerionos állapotba is kerülhetnek, ekkor egyszerre anionos és kationos tulajdonságúak.”

Ionizációs energia:

„Az az energiamennyiség, mely ahhoz szükséges, hogy kationt hozzunk létre egy semlegesebb (nem feltétlenül semleges) töltésű atomból, az ionizációs energia. Általánosabban egy atom n-edik ionizációs energiája az az energiamennyiség, mely ahhoz szükséges, hogy az n-edik elektront leszakítsuk az atomról, miután az előző n–1-et már leszakítottuk.”

Minden sikeres elektronleszakítás során a következő ionizációs fázishoz szükséges energia mennyisége növekszik. Rendkívüli a növekedés, amennyiben egy adott atompálya kiürül, és a következőről kell leszakítani az új elektront. Ezen okból az atomok igyekszenek úgy elrendeződni, hogy telített atompályáik maradjanak. Emiatt például a nátriumból létrejövő Na+-t gyakran megtaláljuk, de a Na2+-t nem, a nagy ionizációs energiaigény miatt. Ugyanígy a magnézium Mg2+ formája gyakori, míg Mg3+ formája nem, és az alumíniumnak csak az Al3+ formája fordul elő a természetben.”

Elektronaffinitás:

„Az az energia, amely egy atom esetében egy elektron befogásához szükséges. Az elektronaffinitás halogénelemek csoportján belül a rendszám növekedésével csökken (kivétel a fluor, amelynek az elektronaffinitása valamivel kisebb, mint a klóré). Két kapcsolódó atom közül az képes erősebben magához szívni a kötő elektronpárt, amelyiknek nagyobb az elektronaffinitása (vagyis anionná alakulásakor nagyobb energia szabadul fel). Ennek a fogalomnak értelmezéséhez abból indulhatunk ki, hogy ha a kapcsolódó A és B atomok elektronaffinitása egyenlő, az A,B- kötés energia az A,A és B,B kapcsolatok energiáinak számtani középértéke.”

Mit értünk szabadionnal telített közegnek:

Míg a fémekben az elektromos töltéssel rendelkező atomokat vagy molekulákat (atomcsoportokat) elektronoknak hívjuk addig ugyan ezeket a molekulákat folyadékban vizsgálva ionoknak nevezzük. Az elektronok áramlásának kialakulása a különböző anyagok elektród potenciálszintjén alapul.

Fejlesztésünk során létrehozott új termék, egy már ismert műszaki-tudományos eredmény felhasználásával készül el. Az IMK Laboratórium Kft. által 2015.11.16-án P15 00545 számon bejegyzett szabadalmának részleges alkalmazásával, egy olyan energiacellát fejlesztünk ki, mely szabad ionokkal telített folyadék közegben az anód/katód pár között elektronok áramlását biztosítja.

Hasonlóan a galvánelemekhez a fém elektróda és az elektrolit között potenciálkülönbség alakul ki. Az anód fémből, elektronok hátra hagyásával pozitív fémionok mennek az oldatba, tehát a fém töltése az oldathoz képest negatív lesz. Az oldatból, elektronok hátra hagyásával pozitív ionok válnak ki a katód felületén, tehát annak töltése az oldathoz képest pozitív lesz.

Galvánelem:

„A galvánelem két elektródból (fél cellából) áll. A legegyszerűbb galvánelem az, amikor a két tiszta fémelektród saját ionjait tartalmazó sóoldatba merül. A sóoldatban a bemerülő fém oxidált, pozitív töltésű kationjai és az ezeket semlegesítő anionok találhatók. Az elektródok a fémet két különböző oxidációs állapotban tartalmazzák. A lejátszódó redoxireakciót a konvenció szerint a redukció irányában írjuk fel. 

Bagdadi elemek i.e. 250 és i.sz. 250 között

Vitatott ugyan, de különböző elméletek és megközelítések arra engednek következtetni, hogy már időszámításunk hajnalán létezhetett a technológia alapja. Bagdadi elemekként azokra a mezopotámiai vázákra szoktak utalni, amelyekkel egyes alternatív történészek szerint, elektromos áramot lehetett létrehozni.

A potenciálkülönbség nagysága akkora, hogy megakadályozza a további elektron átadást, így a kialakuló feszültség mértékét az anód-katód közötti elektródpotenciál egyértelműen maximálja.

Csányi féle galvánelem 1903

Egy egyszerű galvánelem az alábbi módon állítható elő: egy higított kénsavval töltött üvegedénybe egy-egy cink- és rézelektródát helyezünk el. A rézelektródából (vegyi hatás következtében) elektronok lépnek ki a kénsavba, ezzel pozitív töltésűvé válik. A cinkelektróda felületén ennek fordítottja játszódik le, az elektronok a kénsavból lépnek át, tehát itt elektrontöbblet keletkezik, azaz a cinkelektróda negatív töltésű lesz. Az elektródok töltései kiegyenlítődni igyekeznek, ezért az elektródok között feszültség mérhető, cca. 1 volt, amely a terhelés folyamán lecsökken.

Vagy még egyszerűbben:

a citromban nem csak vitamin van

A fejlesztés folyamata alatt, többféle anód/katód anyagpárosítást és azok különböző kialakítását és elrendezését vizsgáltuk meg, a lehető legnagyobb mértékű feszültségszint elérése érdekében. A célunk az volt, hogy egy olyan sósvízben (mint elektrolitban) működő energiacellát hozzunk létre, mely feszültségszintje meghaladja a 15 volt feszültséget, ezzel együtt rövid távon, akár 20 ampert, hosszú távon pedig stabilan, minimum 6 amper áramerősséget legyen képes előállítani.

az optimális anyagpárosítás (magnézium/szén) az elektromos kapcsolat kialakítását biztosító aljzatba szerelve

Szabad ionnal telített közegben működő energiacella fejlesztése során három különböző fejlesztési területre koncentráltunk.

1./ Energiacella fejlesztése:

Optimális anód/katód anyagok és azok elrendezésének kikísérletezése. Az anód/katód párosításánál a legmagasabb elektródpotenciálokat a szén/magnézium (anód pozitív/katód negatív) párosítása során voltunk képesek előállítani.

anód/katód anyag méret és elhelyezés: a magnézium rúd és a kék kosárban a szénrúd

2./ Elektronika fejlesztése:

Az energia cella által előállított egyenáram stabilizálása, a gyakorlati életben is használható feszültségszintek és áramerősségek biztosítása céljából. töltésvezérlés. Az elektronika fejlesztésénél kipróbáltunk néhány már a kereskedelemben kapható és kifogástalan működésre képes töltésvezérlő egységet, de a speciális körülményeket és az egység stabil működésének érdekében támasztott saját követelményeinknek egyik sem felelt meg.

Annak érdekében, hogy az extrém körülményeknek, széles felhasználási igényeknek megfelelő töltésvezérlést építhessünk be egységünkbe, saját fejlesztésű vezérlést kellett építeni és a cellákkal együtt folyamatosan tesztelve, tökéletesíteni.

saját fejlesztésű elektronika és vezérlés

A szabad ionnal telített közegben működő energiacella egység, mint energiatermelő blokk, a kísérleti fázisban, összeszerelés közben. A kilenc egységet tartalmazó energiablokk egységei sorba kötve.

energiacella blokk

Tesztek és a kísérleti folyamat: fizikai kísérletek során sikerült kifejleszteni azt a sósvízben (mint elektrolitban) működő energiacellát, mely feszültségszintje meghaladja a 15 voltot, és rövid távon 20 ampert volt képes leadni, mindezt pedig stabilan és a kísérletek ideje alatt hosszú távon is.

sósvizes kísérleten már átesett egységek

3./ 3D modellezés és tervezés:

A végtermék formai megjelenésének tervezése, különböző változatok kialakítása a várható vevői igények/elvárások feltérképezésével összhangban.

üzemanyagcella magnézium és szénrudainak elhelyezési modellezése 3D technológiával

Az energiacellánk felépítése:

A fejlesztés eredményeként létrehozott, gyártásra kész egység:

Energiacellák a tengervíz által átjárható dobozolásban

Egy egység, tartalmaz 9 db energia termelő cellát, maximális kapacitása: 5 V, feszültségen, 1 A áramerősség, 2,5 Watt teljesítménnyel. Az általunk fejlesztett elektronika képes szabványos feszültségszintre emelni a kijövő teljesítményeket, a piacon kapható eszközigényeknek megfelelően például telefontöltéshez 5 V, 1A, vagy egy vitorlás hajó elektromos rendszereinek alap működtetéséhez, 12 V, 2 A, vagy esetleg több egység sorba kötésével elérhető nagyobb teljesítmény is.

A szabad ionnal telített közegben működő energiacella egység alapelvén, a leghatékonyabb anód/katód párosítás ki kísérletezésével, a dimenziók növelésével (energiatermelő felületek). képesek vagyunk háztartási méretű energiacella megépítésére is.

A fejlesztés végeredménye egy olyan áramforrás, ami a tengerek mellett élő népesség számára, függetlenül a fosszilis energiahordozóktól, napsugárzási és szélviszonyoktól, éjjel nappal és a mi a legfontosabb, stabilan működni képes, állandóan alkalmazható energiaforrást biztosít, akár háztartási méretben is

Záró gondolatok

Az elkészült prototípus, és a sorozatgyártás során létrejövő termékek teljes mértékig környezetbarátnak tekinthetők, így hozzájárulnak a fenntartható környezethez. A tengervíz segítségével előállított energia megújulónak minősül, mivel semmilyen fosszilis energiahordozót nem használ a villamos energia előállításához. Nem szennyezik az élővizeket, nincs melléktermék, nincs emisszió.

A fejlesztéssel nem csak adott fogyasztókat lehet stabilan és hosszútávon ellátni villamos árammal, hanem ahol erre a külső körülmények is biztosítottak, nagyobb akkumulátor telepeket, akkumulátor farmokat is lehetne folyamatosan működtetni, ezzel kisebb – nagyobb lakóközösségek energiaellátását biztosítani, természetesen a megfelelő karbantartás mellett.

Az új prototípus révén lehetőség nyílik a tengervizes energiacella további felhasználására különböző termékfejlesztések keretében.

A jövő a megújuló energiaforrások egyre nagyobb arányú hasznosíthatósága felé mutat, amiben ez a termék és a későbbi termékfejlesztések is úttörő szerepet tudnak játszani.

Szerző: Tankó Gábor fejlesztő mérnök


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Ipar

Átadták Az Év Leginspirálóbb Vezetője Díjat

252 hazai vezérigazgató véleménye alapján harmadik alkalommal ítélte oda Az Év Leginspirálóbb Vezetője Díjat a PwC Magyarország.

A kitüntetéssel olyan hazai cégvezetőt ismernek el, akire a magyarországi vállalatvezetők példaképként tekintenek. Idén a Richter Gedeon Nyrt. vezérigazgatóját, Orbán Gábort díjazták február 19-én a PwC budapesti székházában azon a sajtóeseményen, ahol bemutatták a PwC Vezérigazgató Felmérésének eredményeit.

A PwC Magyarország idén tizennegyedik alkalommal kérdezte meg személyes interjúk formájában a hazai vállalatvezetőket arról, hogy miként látják a globális és hazai gazdasági környezetet, saját üzleti helyzetüket, illetve milyen nehézségekkel és kockázatokkal néznek szembe.

A 2024 októbere és decembere között zajló felmérés keretében arról is nyilatkozhattak az első számú döntéshozók, hogy kit tartanak Magyarország leginspirálóbb vezetőjének. A kutatásban részt vevő 265 cégvezető válaszai alapján Orbán Gábor, a Richer Gedeon Nyrt. vezérigazgatója nyerte a 2024 Leginspirálóbb Vezetője Díjat. Az elismerés odaítélésével a PwC azokra a vezetőkre kívánja felhívni a figyelmet, akik az üzleti eredményeken túl a jövő vállalati ökoszisztémáját is építi, és egyéni fejlődésén túl a szervezet kultúra építése mellett is elkötelezettek, ezáltal példaként szolgálhatnak vezetőtársaik előtt.

A díjat Radványi László, a PwC vezérigazgatója adta át az idei felmérés eredményeit bemutató eseményen.

Az idei díjazottal, Orbán Gáborral készült videó – amelyben megosztja vezetői hitvallását és kollégái a sikerhez vezető útjáról nyilatkoznak -, valamint a kutatás eredményei a PwC Magyarországi Vezérigazgató Felmérés oldalán tekinthetőek meg.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Magas digitalizáltságú logisztikai és disztribúciós központot adott át Miskolcon a Bosch

A Bosch, a technológiák és szolgáltatások nemzetközi szállítója átadta legújabb, csúcstechnológiás logisztikai és disztribúciós központját Miskolcon.

A központot, melynek előzetes kivitelezési munkálatai 2021-ben kezdődtek, a Robert Bosch Power Tool Kft. több mint 54 milliárd forint értékű beruházásból valósította meg. A beruházáshoz a magyar állam egyedi kormánydöntés (EKD) alapján mintegy 7 milliárd forint utófinanszírozás keretében nyújtható, vissza nem térítendő készpénz támogatást biztosít. Az ünnepélyes átadáson részt vett Szijjártó Péter külgazdasági és külügyminiszter és Fükő László, a Robert Bosch Power Tool Kft. ügyvezető igazgatója.

„Nemzetközileg is kiemelkedő színvonalú technológiai infrastruktúránknak, munkatársaink szaktudásának és elkötelezettségének köszönhetjük kiváló eredményeinket. Ez a beruházás az elektromos kéziszerszám üzletághoz tartozó telephelyünk jelentőségét még tovább erősíti a vállalatcsoporton belül”

– mondta Fükő László.

Jövő gyára megoldások közel 100 ezer négyzetméteren

A nagyszabású beruházással egy olyan korszerű raktári struktúrát alakítottak ki a Miskolci Ipari Park területén, amelyben számos Ipar4.0 megoldást is alkalmaztak. A rendszer a teljes értéklánc mentén valós időben, automatikusan kezeli és követi az árut annak beérkezéstől kezdve a felhasználáson és a csomagoláson keresztül a kiszállításon át egészen a megérkezésig. A digitalizációnak köszönhetően a hibák száma akár 20 százalékkal csökkenthető, a folyamatok hatékonysága pedig jelentősen javítható. A rendszerek integrációjához kapcsolódó szoftverfejlesztésekkel, az ehhez szükséges vizualizációs, csomagolást, anyagmozgatást, raktározást vagy nyomkövetést segítő eszközöknek köszönhetően évente akár 204 ezer paletta áru is kiszállítható világszerte. Ha pedig ezt a raklapmennyiséget egymás mellé raknánk, akkor Miskolctól egészen Székesfehérvárig tartana a sor.

A közel 100 ezer négyzetméter nagyságú területen elhelyezkedő központ mellett a Robert Bosch Power Tool Kft. olyan kiegészítő infrastrukturális fejlesztéseket is megvalósított a telephelyen belül, mint a kamionforgalom számára létesített úthálózat vagy a 800 méter hosszú csatornarendszer, hiszen évente nagyjából 3300 kamionra van szükség a fenti árumennyiség szállításához. A Bosch csoport legnagyobb, miskolci kéziszerszámgyárában évente több mint 14 millió darab terméket gyártanak a legmodernebb technológiákkal. A beruházás eredményeként az új létesítmény a vállalatcsoport elektromos kéziszerszám üzletágának egyik meghatározó késztermékelosztó raktára lesz a kelet-közép-európai régióban, illetve késztermék- és alapanyag raktárként is működik majd, ahonnan a világ 26 országába szállítanak különböző cikkeket és komponenseket.

Fókuszban a fenntarthatóság és az ügyfélközpontúság

A miskolci logisztikai és disztribúciós központ a Bosch mintegy 780 raktárból álló nemzetközi ellátásilánc-hálózatának fontos része. A Bosch 37 ezer munkatársa foglalkozik beszerzéssel és logisztikával világszerte, naponta mintegy 230 gyárat látnak el alkatrészekkel és nyersanyagokkal. Meghatározó feladatuk, hogy a Bosch ügyfeleinek magas szintű kiszolgálása érdekében az egész értékfolyamat során folyamatos, fenntartható és rugalmas ellátási láncot működtessenek.

„Az új, miskolci létesítmény építése során is különösen ügyeltünk arra, hogy a projektet a Bosch szélesebb körű fenntarthatósági célkitűzéseivel összhangban valósítsuk meg. Az energiahatékonyság, a hulladékgazdálkodás és a zöld logisztika ugyanolyan prioritást kapott, mint a szolgáltatási szintek javítása, a költséghatékonyság vagy a piacbővítés. Számunkra a fenntarthatóság tehát nem csupán egy lehetőség, hanem kötelező cél”

– hangsúlyozta Fükő László.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

XVII. Gépészeti Szakterületek Nemzetközi Hallgatói Konferenciája

Az ország minden műszaki egyeteméről, sőt határon túlról is várják a jelentkezőket a XVII. Gépészeti Szakterületek Nemzetközi Hallgatói Konferenciájára, a győri Széchenyi István Egyetemre.

A közel két évtizedes múltra visszatekintő rendezvény találkozási lehetőség, verseny és az ipari kapcsolatépítés színtere is egyben. Regisztrálni március 2-ig lehet.

A Széchenyi István Egyetem hallgatóiban 2006-ban merült fel a gondolat, hogy létrehozzanak egy olyan programot, amelyen az országban működő műszaki egyetemek fiataljai cserélhetnek tapasztalatot és mutathatják be tudásukat. A rendezvény azonban mindig jóval több puszta versenynél: összeköti a nyugat-dunántúli régió cégeit az ifjú szakemberekkel, betekintést enged tényleges projektekbe, és mindeközben valódi közösséget kovácsol. A konferencia mára nemzetközivé vált, amelyen a magyar egyetemek mellett évről évre növekvő számban vesznek részt külhoni felsőoktatási intézmények  is. A program különlegessége, hogy azt teljes egészében egyetemisták szervezik a hallgatói önkormányzat irányításával.

A Gépészeti Szakterületek Nemzetközi Hallgatói Konferenciája fókuszában a gyakorlati problémák megoldása áll, amelynek során a résztvevők valós ipari kihívásokra kereshetnek válaszokat, és ismertethetik saját kutatási eredményeiket vagy projektmunkáikat. Az esemény célja nemcsak a szakmai fejlődés elősegítése, hanem az ipar és az oktatás közötti együttműködés megerősítése és olyan kapcsolatok kialakítása is, amely hozzájárul a hallgatók jövőbeni karrierjének építéséhez.

A vállalkozások részéről óriási az igény arra, hogy bevonják aktuális projektjeikbe a hallgatókat. A verseny során a résztvevőknek véletlenszerűen összeállított csapatokban kell megoldaniuk a cégek által felvetett komplex műszaki problémát, mindössze néhány nap alatt. A rendezvény eredeti, még 2006-ban lefektetett koncepciója nem csupán kiállta az idők próbáját, hanem egyre fontosabbá is válik a 21. században: mérnöki hallgatói verseny keretein belül nyújt lényegében gyakorlatorientált képzést úgy, hogy a feladatokat adó vállalkozások hasznos megoldásokkal, és ami még fontosabb, tehetséges hallgatókkal gyarapodhatnak.

Az idei program a hagyományoknak megfelelően az autóstalálkozóval veszi kezdetét a győri campuson április 13-án, majd másnap a csapatfeladatokkal folytatódik, a zárást pedig az április 16-i prezentáció és eredményhirdetés jelenti. A konferenciára – amelyet több szórakoztató esemény, ismerkedési est és bográcsozás is színesít – március 2-ig várják a jelentkezéseket. Bővebb információ és a regisztrációs űrlap itt érhető el, a tavalyi rendezvény beszámolója pedig itt olvasható.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement Hirdetés
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Friss