Connect with us

Ipar

A szabadionnal telített közegben működő energiacella fejlesztés eredményeinek bemutatása

energiacella max construct

A projekt a „Vállalatok K+F+I tevékenységének támogatása kombinált hiteltermék keretében” című és GINOP-2.1.2-8.1.4-16 azonosítószámú pályázati kiírás támogatásával valósult meg.

Összegzés

A Max-Construct Kft fejlesztésének végtermékeként egy olyan energia cella, került kifejlesztésre, ami független egyéb más energia előállító és szállító technológiáktól, a folyamat elindításához és stabil hosszú távú működéséhez nincs szükség egyéb külső energia vagy energiahordozó bevonására, napi 24 órában működik, valós alternatívát nyújt a tengerpartok mellett élőknek napelemes és szélgenerátor technológiák mellett a villamos energia előállítására.

A prototípus feszültségszintje meghaladja a 15V-ot és a cella által leadott áramerősség rövid távon akár 20A-t, hosszú távon pedig min. 6-A-t tud előállítani.

A prototípus az ún. katódelrendezésen alapuló energiacella, mely tartalmaz katódanyag térrészt meghatározó, elektrolit által átjárható katódfalat tartalmazó katódházat, valamint a katódanyag térrészbe első végrészével benyúló, második végrészével a katódanyag térrészen kívülre nyúló, szénből lévő katódelemet és a katódanyag térrészben 2-5 mm átmérőjű, hengeres alakú, szénből extrudált katódszemcséket. Az innovatív eljárás részét képezi még a katódelrendezést tartalmazó energiacella, az energiacellát tartalmazó hidrogéngáz-feldolgozó elrendezés és az energiacella alkalmazása elektrolitként tengervizet használva.

A fejlesztés során speciális elektronikát is fejlesztettünk az energiacellából nyert villamos energia akkumulátorok töltésére alkalmassá tételére.

Az energiacella működési elve a galvánelem hatáson alapul, melynek értelmében két elektród között (anód és katód) elektrolit közegben elektromos áram indukálódik és az elektrolitot maga a sós tengervíz adja.

Berendezésünk működési elvének és működésének megértéséhez néhány kémiai és fizikai alapelv a hétköznapinál valamivel mélyebb ismerete szükséges.

Ion, ionizáció:

A Wikipédia meghatározásai szerint:

„Az ion: Olyan atom vagy molekula (atomcsoport), mely elektromos töltéssel rendelkezik. A negatív töltésű ion, más néven anion olyan atom vagy molekula, melynek egy vagy több elektrontöbblete van, a kation pedig pozitív töltésű ion, amiben egy vagy több elektronhiány van, mint az eredeti részecskében. A folyamat, mely során létrejönnek az ionok, az ionizáció. Az ionizált atomokat vagy atomcsoportokat úgy jelölik, hogy az atom vagy molekula fölött jelölik az elvesztett vagy szerzett elektronok számát (kivéve, ha egy van, akkor nem jelölik), és a töltést (+ vagy −). Példa: H+, O2−.

Egyszerű atomok esetén a fémek legtöbbször kationokat hoznak létre, a nemfémek anionokat, például a nátrium Na+ kationt, míg a klór Cl (klorid) aniont hoz létre.

Bonyolultabb szerves molekulák ikerionos állapotba is kerülhetnek, ekkor egyszerre anionos és kationos tulajdonságúak.”

Ionizációs energia:

„Az az energiamennyiség, mely ahhoz szükséges, hogy kationt hozzunk létre egy semlegesebb (nem feltétlenül semleges) töltésű atomból, az ionizációs energia. Általánosabban egy atom n-edik ionizációs energiája az az energiamennyiség, mely ahhoz szükséges, hogy az n-edik elektront leszakítsuk az atomról, miután az előző n–1-et már leszakítottuk.”

Minden sikeres elektronleszakítás során a következő ionizációs fázishoz szükséges energia mennyisége növekszik. Rendkívüli a növekedés, amennyiben egy adott atompálya kiürül, és a következőről kell leszakítani az új elektront. Ezen okból az atomok igyekszenek úgy elrendeződni, hogy telített atompályáik maradjanak. Emiatt például a nátriumból létrejövő Na+-t gyakran megtaláljuk, de a Na2+-t nem, a nagy ionizációs energiaigény miatt. Ugyanígy a magnézium Mg2+ formája gyakori, míg Mg3+ formája nem, és az alumíniumnak csak az Al3+ formája fordul elő a természetben.”

Elektronaffinitás:

„Az az energia, amely egy atom esetében egy elektron befogásához szükséges. Az elektronaffinitás halogénelemek csoportján belül a rendszám növekedésével csökken (kivétel a fluor, amelynek az elektronaffinitása valamivel kisebb, mint a klóré). Két kapcsolódó atom közül az képes erősebben magához szívni a kötő elektronpárt, amelyiknek nagyobb az elektronaffinitása (vagyis anionná alakulásakor nagyobb energia szabadul fel). Ennek a fogalomnak értelmezéséhez abból indulhatunk ki, hogy ha a kapcsolódó A és B atomok elektronaffinitása egyenlő, az A,B- kötés energia az A,A és B,B kapcsolatok energiáinak számtani középértéke.”

Mit értünk szabadionnal telített közegnek:

Míg a fémekben az elektromos töltéssel rendelkező atomokat vagy molekulákat (atomcsoportokat) elektronoknak hívjuk addig ugyan ezeket a molekulákat folyadékban vizsgálva ionoknak nevezzük. Az elektronok áramlásának kialakulása a különböző anyagok elektród potenciálszintjén alapul.

Fejlesztésünk során létrehozott új termék, egy már ismert műszaki-tudományos eredmény felhasználásával készül el. Az IMK Laboratórium Kft. által 2015.11.16-án P15 00545 számon bejegyzett szabadalmának részleges alkalmazásával, egy olyan energiacellát fejlesztünk ki, mely szabad ionokkal telített folyadék közegben az anód/katód pár között elektronok áramlását biztosítja.

Hasonlóan a galvánelemekhez a fém elektróda és az elektrolit között potenciálkülönbség alakul ki. Az anód fémből, elektronok hátra hagyásával pozitív fémionok mennek az oldatba, tehát a fém töltése az oldathoz képest negatív lesz. Az oldatból, elektronok hátra hagyásával pozitív ionok válnak ki a katód felületén, tehát annak töltése az oldathoz képest pozitív lesz.

Galvánelem:

„A galvánelem két elektródból (fél cellából) áll. A legegyszerűbb galvánelem az, amikor a két tiszta fémelektród saját ionjait tartalmazó sóoldatba merül. A sóoldatban a bemerülő fém oxidált, pozitív töltésű kationjai és az ezeket semlegesítő anionok találhatók. Az elektródok a fémet két különböző oxidációs állapotban tartalmazzák. A lejátszódó redoxireakciót a konvenció szerint a redukció irányában írjuk fel. 

Bagdadi elemek i.e. 250 és i.sz. 250 között

Vitatott ugyan, de különböző elméletek és megközelítések arra engednek következtetni, hogy már időszámításunk hajnalán létezhetett a technológia alapja. Bagdadi elemekként azokra a mezopotámiai vázákra szoktak utalni, amelyekkel egyes alternatív történészek szerint, elektromos áramot lehetett létrehozni.

A potenciálkülönbség nagysága akkora, hogy megakadályozza a további elektron átadást, így a kialakuló feszültség mértékét az anód-katód közötti elektródpotenciál egyértelműen maximálja.

Csányi féle galvánelem 1903

Egy egyszerű galvánelem az alábbi módon állítható elő: egy higított kénsavval töltött üvegedénybe egy-egy cink- és rézelektródát helyezünk el. A rézelektródából (vegyi hatás következtében) elektronok lépnek ki a kénsavba, ezzel pozitív töltésűvé válik. A cinkelektróda felületén ennek fordítottja játszódik le, az elektronok a kénsavból lépnek át, tehát itt elektrontöbblet keletkezik, azaz a cinkelektróda negatív töltésű lesz. Az elektródok töltései kiegyenlítődni igyekeznek, ezért az elektródok között feszültség mérhető, cca. 1 volt, amely a terhelés folyamán lecsökken.

Vagy még egyszerűbben:

a citromban nem csak vitamin van

A fejlesztés folyamata alatt, többféle anód/katód anyagpárosítást és azok különböző kialakítását és elrendezését vizsgáltuk meg, a lehető legnagyobb mértékű feszültségszint elérése érdekében. A célunk az volt, hogy egy olyan sósvízben (mint elektrolitban) működő energiacellát hozzunk létre, mely feszültségszintje meghaladja a 15 volt feszültséget, ezzel együtt rövid távon, akár 20 ampert, hosszú távon pedig stabilan, minimum 6 amper áramerősséget legyen képes előállítani.

az optimális anyagpárosítás (magnézium/szén) az elektromos kapcsolat kialakítását biztosító aljzatba szerelve

Szabad ionnal telített közegben működő energiacella fejlesztése során három különböző fejlesztési területre koncentráltunk.

1./ Energiacella fejlesztése:

Optimális anód/katód anyagok és azok elrendezésének kikísérletezése. Az anód/katód párosításánál a legmagasabb elektródpotenciálokat a szén/magnézium (anód pozitív/katód negatív) párosítása során voltunk képesek előállítani.

anód/katód anyag méret és elhelyezés: a magnézium rúd és a kék kosárban a szénrúd

2./ Elektronika fejlesztése:

Az energia cella által előállított egyenáram stabilizálása, a gyakorlati életben is használható feszültségszintek és áramerősségek biztosítása céljából. töltésvezérlés. Az elektronika fejlesztésénél kipróbáltunk néhány már a kereskedelemben kapható és kifogástalan működésre képes töltésvezérlő egységet, de a speciális körülményeket és az egység stabil működésének érdekében támasztott saját követelményeinknek egyik sem felelt meg.

Annak érdekében, hogy az extrém körülményeknek, széles felhasználási igényeknek megfelelő töltésvezérlést építhessünk be egységünkbe, saját fejlesztésű vezérlést kellett építeni és a cellákkal együtt folyamatosan tesztelve, tökéletesíteni.

saját fejlesztésű elektronika és vezérlés

A szabad ionnal telített közegben működő energiacella egység, mint energiatermelő blokk, a kísérleti fázisban, összeszerelés közben. A kilenc egységet tartalmazó energiablokk egységei sorba kötve.

energiacella blokk

Tesztek és a kísérleti folyamat: fizikai kísérletek során sikerült kifejleszteni azt a sósvízben (mint elektrolitban) működő energiacellát, mely feszültségszintje meghaladja a 15 voltot, és rövid távon 20 ampert volt képes leadni, mindezt pedig stabilan és a kísérletek ideje alatt hosszú távon is.

sósvizes kísérleten már átesett egységek

3./ 3D modellezés és tervezés:

A végtermék formai megjelenésének tervezése, különböző változatok kialakítása a várható vevői igények/elvárások feltérképezésével összhangban.

üzemanyagcella magnézium és szénrudainak elhelyezési modellezése 3D technológiával

Az energiacellánk felépítése:

A fejlesztés eredményeként létrehozott, gyártásra kész egység:

Energiacellák a tengervíz által átjárható dobozolásban

Egy egység, tartalmaz 9 db energia termelő cellát, maximális kapacitása: 5 V, feszültségen, 1 A áramerősség, 2,5 Watt teljesítménnyel. Az általunk fejlesztett elektronika képes szabványos feszültségszintre emelni a kijövő teljesítményeket, a piacon kapható eszközigényeknek megfelelően például telefontöltéshez 5 V, 1A, vagy egy vitorlás hajó elektromos rendszereinek alap működtetéséhez, 12 V, 2 A, vagy esetleg több egység sorba kötésével elérhető nagyobb teljesítmény is.

A szabad ionnal telített közegben működő energiacella egység alapelvén, a leghatékonyabb anód/katód párosítás ki kísérletezésével, a dimenziók növelésével (energiatermelő felületek). képesek vagyunk háztartási méretű energiacella megépítésére is.

A fejlesztés végeredménye egy olyan áramforrás, ami a tengerek mellett élő népesség számára, függetlenül a fosszilis energiahordozóktól, napsugárzási és szélviszonyoktól, éjjel nappal és a mi a legfontosabb, stabilan működni képes, állandóan alkalmazható energiaforrást biztosít, akár háztartási méretben is

Záró gondolatok

Az elkészült prototípus, és a sorozatgyártás során létrejövő termékek teljes mértékig környezetbarátnak tekinthetők, így hozzájárulnak a fenntartható környezethez. A tengervíz segítségével előállított energia megújulónak minősül, mivel semmilyen fosszilis energiahordozót nem használ a villamos energia előállításához. Nem szennyezik az élővizeket, nincs melléktermék, nincs emisszió.

A fejlesztéssel nem csak adott fogyasztókat lehet stabilan és hosszútávon ellátni villamos árammal, hanem ahol erre a külső körülmények is biztosítottak, nagyobb akkumulátor telepeket, akkumulátor farmokat is lehetne folyamatosan működtetni, ezzel kisebb – nagyobb lakóközösségek energiaellátását biztosítani, természetesen a megfelelő karbantartás mellett.

Az új prototípus révén lehetőség nyílik a tengervizes energiacella további felhasználására különböző termékfejlesztések keretében.

A jövő a megújuló energiaforrások egyre nagyobb arányú hasznosíthatósága felé mutat, amiben ez a termék és a későbbi termékfejlesztések is úttörő szerepet tudnak játszani.

Szerző: Tankó Gábor fejlesztő mérnök


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Ipar

Magyar kutatók fejlesztik a jövő intelligens járműveit

Évente több millió közúti baleset történik világszerte, és ezek túlnyomó többségét – mintegy 94%-át – emberi hiba okozza.

Vajon mi lenne, ha a járművek előre látnák a kockázatokat és gyorsabban reagálnának, mint akár a legjobb sofőrök? Egy magyar kutatólabor, a HUN-REN SZTAKI SCL a világ vezető technológiai és mérnöki vállalataival együttműködésben éppen ezen dolgozik.

karambolokon túl torlódásokat, üzemanyag-pazarlást és késéseket is okoz.

Képzeljünk el egy olyan autonóm rendszert, amely nem csak a közlekedési szabályokat követi, hanem képes előre „látni” a busz mögül hirtelen kilépő gyalogost, és aszerint beállítani az útvonalát, hogy elkerülje a balesetet, mielőtt az bekövetkezne. Egyre gyakrabban hallunk kisebb-nagyobb mértékben önvezető autókról, amelyek egyre fejlettebbek, de a valós közlekedési szituációkhoz és a kiszámíthatatlan emberi sofőrökhöz való alkalmazkodás sokkal nagyobb kihívás, mint azt a legtöbben gondolnánk.

Ezen akadályok leküzdése innovatív kutatást, fejlett algoritmusokat és a való világ sokféleségét megfelelően kezelő vezérlőrendszereket igényel – ezzel foglalkozik immár több mint 35 éve a HUN-REN SZTAKI Rendszer- és Irányításelméleti Kutatólaboratóriuma (SCL).

Intelligensebb közlekedés, biztonságosabb utak

A HUN-REN SZTAKI SCL a matematikai rendszerelmélet és irányítástechnika egyik vezető hazai kutatóhelye. A laboratórium többek között a közlekedés valós kihívásainak megoldására összpontosít, olyan mesterséges intelligencia alapú vezérlő algoritmusok kifejlesztésével, amelyek lehetővé teszik az autonóm járművek számára, hogy komplex környezetekben is jobban tudjanak előre jelezni, reagálni és tanulni.

„Az autonóm járműveknek képesnek kell lenniük egy olyan világban navigálni, amely még mindig tele van emberi sofőrökkel és kiszámíthatatlan helyzetekkel. Kutatásaink célja olyan modellek létrehozása, amelyek lehetővé teszik, hogy az önvezető autók biztonságosabb döntéseket hozzanak az utakon”

– magyarázza Gáspár Péter professzor, az SCL vezetője.

A laboratóriumban olyan helyzeteket szimulálnak és modelleznek, amelyek túl veszélyesek vagy egyenesen kivitelezhetetlenek a való életben történő teszteléshez. Gondoljunk csak arra, hogyan lehet az önvezető autót megtanítani arra, hogy megfelelően reagáljon a hirtelen úttestre lépő gyalogosra – például egy parkoló busz mögül előugró gyerekre. Itt jön képbe az SCL különleges tesztpályája, az „AI MotionLab”, ahol az elméletben és számítógépes szimulációk során már bizonyított modelleket a virtuális, illetve kiterjesztett valóság (VR, AR) és a kevert valóság (MR) alkalmazásával teszik próbára. Ez lehetővé teszi, hogy a szakemberek virtuális gyalogosokat, kerékpárosokat vagy akár kiszámíthatatlan időjárási viszonyokat hozzanak létre, amelyek valós járművekkel – az eredeti autók kicsinyített változatával – lépnek interakcióba. A digitális elemek éppúgy viselkednek, mint a való világ veszélyforrásai, lehetővé téve a mérnökök számára, hogy egy autonóm rendszer reakcióit biztonságos, megismételhető és költséghatékony módon vizsgálják.

Ez a módszer különösen fontos a ritka, de kritikus helyzetek kezelésének tanításában. Az SCL kutatói nem csupán a valós adatokra támaszkodnak, hanem virtuálisan generálják és szimulálják ezeket az extrém helyzeteket, lehetővé téve az önvezető rendszerek számára, hogy gyorsabban tanuljanak és megbízhatóbbá váljanak, mielőtt a nyilvános utakon bevetik őket.

A fejlett modellezés és a valós tesztelés kombinálásával az SCL nemcsak biztonságosabbá teszi az autonóm járműveket, hanem fel is gyorsítja fejlesztésüket, miközben minimalizálja a kockázatokat. Ez az innovatív megközelítés az oka annak, hogy időnként a hazai és külföldi technológiai és mérnöki vállalatok is a magyar kutatólaborhoz fordulnak fejlesztési javaslatokért. Így lehetséges az, hogy az SCL a piaci szereplőkkel közösen tevőlegesen is formálja az intelligens mobilitás jövőjét.

A mobilitáson túl

Az SCL munkája túlmutat az autonóm autókon. A kutatólabor a szélesebb körű közlekedési hatékonysággal, a járművek összekapcsolhatóságával, valamint a repülésben, a vasúti hálózatokban és az ipari energetikai megoldásokban használt biztonságkritikus vezérlőrendszerekkel is foglalkozik.

„Olyan alapkutatásokon dolgozunk, amelyek közvetlenül befolyásolják a mobilitás jövőjét. Algoritmusaink nem csupán az egyes autók jobb vezetését segítik, de hozzájárulnak akár teljes közlekedési rendszerek újratervezéséhez, hogy biztonságosabbá, hatékonyabbá és fenntarthatóbbá tegyék azokat”

– tette hozzá Gáspár professzor.

Bár az önvezető autók még nem lepték el tömegesen városainkat, a HUN-REN SZTAKI SCL-nél dolgozó hazai szakemberek egy olyan jövő felé építik az utat, amelyben az autonóm járművek biztonságosabbak, intelligensebbek és jobban felkészültek a kiszámíthatatlan vezetési helyzetekre.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Egyre népszerűbb az ADA P1 Meter – de nem csak a HMKE felhasználók körében

A GreenHESS Kft. fejlesztése, az ADA P1 Meter, rövid időn belül komoly népszerűségre tett szert a hazai piacon.

A villamosenergia-fogyasztás valós idejű monitorozására szolgáló okoseszköz elsősorban a napelemes rendszert üzemeltetők körében arat sikert, de egyre többen érdeklődnek iránta azok közül is, akik még csak most tervezik energiahatékony otthon kialakítását – vagy egyszerűen csak szeretnék jobban megismerni fogyasztási szokásaikat.

Intelligens energiagazdálkodás, valós időben

Az ADA P1 Meter a villanyóra P1 portjához csatlakozva 10 másodpercenként képes adatokat gyűjteni a háztartás energiafogyasztásáról és termeléséről. A mért értékek valós időben jelennek meg az okosvillanyora.hu webes felületen, ahol grafikonok, kimutatások és riportok segítik a felhasználókat az energiafogyasztás megértésében és optimalizálásában.

Fejlett integrációk, könnyű használat

Az ADA P1 Meter könnyedén integrálható olyan rendszerekbe, mint az MQTT, JSON API, Telegram vagy a Home Assistant. A telepítése egyszerű, az eszköz automatikusan felismeri a szabványos P1 portokat, és önállóan képes a mért adatokat továbbítani bármely kompatibilis eszköz vagy szolgáltatás felé.

Nem csak a napelemeseknek hasznos

Az eszköz nagy segítséget nyújt:

  • HMKE tulajdonosoknak, akik nyomon követhetik a termelés és fogyasztás arányát.
  • Leendő napelemeseknek, akik előzetes fogyasztási mintákat szeretnének megismerni a pontos rendszertervezéshez.
  • Bármely háztartásnak, amely tudatosabbá szeretné tenni energiafelhasználását.

Intelligens energiagazdálkodás, valós időben

Az ADA P1 Meter a villanyóra P1 portjához csatlakozva 10 másodpercenként képes adatokat gyűjteni a háztartás energiafogyasztásáról és termeléséről. A mért értékek valós időben jelennek meg az okosvillanyora.hu webes felületen, ahol grafikonok, kimutatások és riportok segítik a felhasználókat az energiafogyasztás megértésében és optimalizálásában.

Kapcsolt szolgáltatásként az okosvillanyora.hu lehetőséget biztosít arra is, hogy a felhasználó akár percenként mentse saját adatait, és hosszú távon visszakereshetővé tegye a fogyasztási és termelési mintákat. A platform teljes egészében magyar nyelvű, és kizárólag magyar felhasználók igényeire lett szabva, hogy mindenki könnyen és gyorsan eligazodjon benne – technikai tudás nélkül is.

Ez a rendszer nemcsak egy eszközt ad a kezünkbe, hanem egy komplex, mégis egyszerűen használható megoldást az energiatudatosságra törekvő háztartások számára.

Új szintre lép az energiamenedzsment – jön az ADA P1 Server is

A GreenHESS hamarosan bemutatja az ADA P1 Server eszközt, amely az ADA P1 Meter tökéletes kiegészítője. A P1 Server egy lokálisan működő, intelligens adatgyűjtő és automatizáló központ, amely:

  • SD kártyára menti az adatokat 10 másodpercenként,
  • hálózaton automatikusan megtalálja és követi az ADA P1 Meter adatait,
  • JavaScript-alapú szabályrendszert kínál, amely lehetővé teszi egyedi logikák létrehozását,
  • saját webes felülettel rendelkezik, amelyen keresztül a felhasználó menedzselheti és módosíthatja az automatizmusokat.

Konkrét példák az ADA P1 Server használatára:

  • Napelemes túltermelés figyelése: Ha a visszatáplálás meghalad egy megadott értéket, a rendszer automatikusan elindíthat egy Wi-Fi-s melegvíz-bojlert, ezzel optimalizálva az energiafelhasználást.
  • Túl magas fogyasztás esetén riasztás: Ha a háztartás energiafogyasztása hirtelen megugrik (pl. 5 kW fölé), a szerver automatikusan push üzenetet küld vagy bekapcsol egy vészvilágítást.
  • Dinamikus töltésvezérlés: Az ADA P1 Server a valós idejű fogyasztási adatok alapján képes vezérelni egy elektromos autó töltőjét, hogy az csak akkor működjön, amikor van elérhető szabad kapacitás.
  • Működési naplózás: A szerver naplózza a fontos eseményeket, és elmenti a hálózati zavarokat, megszakításokat vagy szokatlan terheléseket.

A cél: teljes kontroll és tudatosság

Az ADA P1 Meter és az ADA P1 Server együtt egy kompakt, költséghatékony megoldást kínál az otthoni energiagazdálkodás modernizálására. Az eszközök egyszerűen telepíthetők, helyi hálózaton működnek, és lehetőséget biztosítanak arra, hogy a felhasználó valódi kontrollt szerezzen az energiafogyasztás felett – mindenféle bonyolult rendszerek nélkül.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Mintegy 1,4 milliárd forintból modernizálta három áruházát a SPAR Magyarország

Márciusban három megújult SPAR-szupermarketet is birtokba vehettek a vásárlók: a vállalat összesen mintegy 1,4 milliárd forintot fordított egy-egy budapesti, csornai és tatabányai üzletének átalakítására és energetikai modernizálására.

„A SPAR Magyarország minden évben jelentős forrásokat biztosít a meglévő áruházai fejlesztésére: ennek megfelelően az idei évben is tovább folytatjuk a beruházási programunkat. Nagy örömmel számolhatok be róla, hogy márciusban egy-egy forgalmas budapesti, csornai és tatabányai SPAR-szupermarket modernizálása fejeződött be: mindezekre összesen 1,4 milliárd forintot fordítottunk. A beruházásokban közös, hogy az üzletek korábbi eladótere vonzóbbá és korszerűbbé vált, emellett – összhangban a vállalatunk fenntarthatósági céljaival – mindegyik áruházunk a korábbiakhoz képest energiatakarékosabb is lett”

– ismertette Maczelka Márk, a SPAR Magyarország kommunikációs vezetője.

A főváros XXI. kerületében, Csepelen, a Csikó sétány 2. szám alatti szupermarket felújítására 771 millió forintot fordított a SPAR. A beruházás során a SPAR frissítette az épület homlokzati megjelenését. Emellett az eladótér hűtőbútorait, zöldséges állványait, pékség bútorait, valamint állványrendszereit és a kasszákat is újakra cserélték. Az üzlet eladóterében először a friss árukínálat fogadja a vásárlókat, akik a friss zöldségek-gyümölcsök, kényelmi termékek, tejtermékek, csemegefélék, húsáruk és helyben sütött pékáruk széles választékából válogathatnak. A kiszolgálópult és a pékség megjelenését a legújabb SPAR koncepció szerint valósították meg. Az üzlet újdonsága a grill kiszolgálópult, ahol helyben sütött finomságokat, készételeket kínálnak a vásárlóknak. A gyors és kényelmes fizetést az újranyitást követően önkiszolgáló kasszák is segítik. Az áruházban 22 alkalmazottnak biztosít megélhetést a vállalat. A szupermarket energetikai rendszerét környezettudatos megoldásokra cserélték: az eladóteret takarékos LED lámpák világítják meg. A hűtéstechnikát új, környezetkímélő, szén-dioxid-alapú rendszerre cserélte a SPAR, és az új hűtőbútorok is ajtózva érkeztek.

Összesen 290 millió forintos fejlesztést hajtott végre Csornán a SPAR. Az Erzsébet királyné utca 5. szám alatti, 19 kereskedelmi szakembernek munkát biztosító üzlet költséghatékony átalakítása során a korábbinál nagyobb zöldség-gyümölcs osztály kapott helyet, a csemege-hús részleg és a tejhűtők új helyre kerültek az eladótérben, ahol az újranyitást követően önkiszolgáló melegentartóval felszerelt, friss ételeket kínáló grillegység is várja a vásárlókat. A modernizálás során az üzletbe új eladótéri hűtőbútorokat telepített a SPAR, és egy kényelmi termékeket kínáló convenience hűtősziget is helyet kapott. A megújult áruház – összhangban a SPAR törekvéseivel – a korábbihoz képest jóval energiatakarékosabb lett: a technológiai hűtéstechnika új, környezetkímélő, szén-dioxid alapú rendszer és az új hűtőbútorok ajtózva érkeztek.

Tatabánya kertvárosi lakótelepén, a Szent György utca 48. szám alatti, 18 munkatársat foglalkoztató SPAR-szupermarket is megújult. A 290 millió forint összköltségű fejlesztés során az eladótér átalakításának legfontosabb szempontja az lett, hogy a forgalmas üzlet vásárlói jól áttekintetően találkozhassanak az üzletlánc széles termékkínálatával. Az áruházban új funkcióként helyben készült ételeket kínáló grillegységet alakítottak ki önkiszolgáló melegentartóval, és az eladótérbe kényelmi termékeket – egyebek mellett szendvicseket, salátákat ­– kínáló convenience hűtősziget is bekerült. A modernizálás során az áruházba új kiszolgálópult-hűtőket és a legújabb koncepció szerinti pékáru kínáló bútorokat építettek be, valamint az eladótéri hűtőbútorokat is újakra cserélték, mindezek mellett az áruház eladóterének világítását pedig LED technológiájúra cserélte a SPAR.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement Hirdetés
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Friss