Connect with us

Ipar

A szabadionnal telített közegben működő energiacella fejlesztés eredményeinek bemutatása

energiacella max construct

A projekt a „Vállalatok K+F+I tevékenységének támogatása kombinált hiteltermék keretében” című és GINOP-2.1.2-8.1.4-16 azonosítószámú pályázati kiírás támogatásával valósult meg.

Összegzés

A Max-Construct Kft fejlesztésének végtermékeként egy olyan energia cella, került kifejlesztésre, ami független egyéb más energia előállító és szállító technológiáktól, a folyamat elindításához és stabil hosszú távú működéséhez nincs szükség egyéb külső energia vagy energiahordozó bevonására, napi 24 órában működik, valós alternatívát nyújt a tengerpartok mellett élőknek napelemes és szélgenerátor technológiák mellett a villamos energia előállítására.

A prototípus feszültségszintje meghaladja a 15V-ot és a cella által leadott áramerősség rövid távon akár 20A-t, hosszú távon pedig min. 6-A-t tud előállítani.

A prototípus az ún. katódelrendezésen alapuló energiacella, mely tartalmaz katódanyag térrészt meghatározó, elektrolit által átjárható katódfalat tartalmazó katódházat, valamint a katódanyag térrészbe első végrészével benyúló, második végrészével a katódanyag térrészen kívülre nyúló, szénből lévő katódelemet és a katódanyag térrészben 2-5 mm átmérőjű, hengeres alakú, szénből extrudált katódszemcséket. Az innovatív eljárás részét képezi még a katódelrendezést tartalmazó energiacella, az energiacellát tartalmazó hidrogéngáz-feldolgozó elrendezés és az energiacella alkalmazása elektrolitként tengervizet használva.

A fejlesztés során speciális elektronikát is fejlesztettünk az energiacellából nyert villamos energia akkumulátorok töltésére alkalmassá tételére.

Az energiacella működési elve a galvánelem hatáson alapul, melynek értelmében két elektród között (anód és katód) elektrolit közegben elektromos áram indukálódik és az elektrolitot maga a sós tengervíz adja.

Berendezésünk működési elvének és működésének megértéséhez néhány kémiai és fizikai alapelv a hétköznapinál valamivel mélyebb ismerete szükséges.

Ion, ionizáció:

A Wikipédia meghatározásai szerint:

„Az ion: Olyan atom vagy molekula (atomcsoport), mely elektromos töltéssel rendelkezik. A negatív töltésű ion, más néven anion olyan atom vagy molekula, melynek egy vagy több elektrontöbblete van, a kation pedig pozitív töltésű ion, amiben egy vagy több elektronhiány van, mint az eredeti részecskében. A folyamat, mely során létrejönnek az ionok, az ionizáció. Az ionizált atomokat vagy atomcsoportokat úgy jelölik, hogy az atom vagy molekula fölött jelölik az elvesztett vagy szerzett elektronok számát (kivéve, ha egy van, akkor nem jelölik), és a töltést (+ vagy −). Példa: H+, O2−.

Egyszerű atomok esetén a fémek legtöbbször kationokat hoznak létre, a nemfémek anionokat, például a nátrium Na+ kationt, míg a klór Cl (klorid) aniont hoz létre.

Bonyolultabb szerves molekulák ikerionos állapotba is kerülhetnek, ekkor egyszerre anionos és kationos tulajdonságúak.”

Ionizációs energia:

„Az az energiamennyiség, mely ahhoz szükséges, hogy kationt hozzunk létre egy semlegesebb (nem feltétlenül semleges) töltésű atomból, az ionizációs energia. Általánosabban egy atom n-edik ionizációs energiája az az energiamennyiség, mely ahhoz szükséges, hogy az n-edik elektront leszakítsuk az atomról, miután az előző n–1-et már leszakítottuk.”

Minden sikeres elektronleszakítás során a következő ionizációs fázishoz szükséges energia mennyisége növekszik. Rendkívüli a növekedés, amennyiben egy adott atompálya kiürül, és a következőről kell leszakítani az új elektront. Ezen okból az atomok igyekszenek úgy elrendeződni, hogy telített atompályáik maradjanak. Emiatt például a nátriumból létrejövő Na+-t gyakran megtaláljuk, de a Na2+-t nem, a nagy ionizációs energiaigény miatt. Ugyanígy a magnézium Mg2+ formája gyakori, míg Mg3+ formája nem, és az alumíniumnak csak az Al3+ formája fordul elő a természetben.”

Elektronaffinitás:

„Az az energia, amely egy atom esetében egy elektron befogásához szükséges. Az elektronaffinitás halogénelemek csoportján belül a rendszám növekedésével csökken (kivétel a fluor, amelynek az elektronaffinitása valamivel kisebb, mint a klóré). Két kapcsolódó atom közül az képes erősebben magához szívni a kötő elektronpárt, amelyiknek nagyobb az elektronaffinitása (vagyis anionná alakulásakor nagyobb energia szabadul fel). Ennek a fogalomnak értelmezéséhez abból indulhatunk ki, hogy ha a kapcsolódó A és B atomok elektronaffinitása egyenlő, az A,B- kötés energia az A,A és B,B kapcsolatok energiáinak számtani középértéke.”

Mit értünk szabadionnal telített közegnek:

Míg a fémekben az elektromos töltéssel rendelkező atomokat vagy molekulákat (atomcsoportokat) elektronoknak hívjuk addig ugyan ezeket a molekulákat folyadékban vizsgálva ionoknak nevezzük. Az elektronok áramlásának kialakulása a különböző anyagok elektród potenciálszintjén alapul.

Fejlesztésünk során létrehozott új termék, egy már ismert műszaki-tudományos eredmény felhasználásával készül el. Az IMK Laboratórium Kft. által 2015.11.16-án P15 00545 számon bejegyzett szabadalmának részleges alkalmazásával, egy olyan energiacellát fejlesztünk ki, mely szabad ionokkal telített folyadék közegben az anód/katód pár között elektronok áramlását biztosítja.

Hasonlóan a galvánelemekhez a fém elektróda és az elektrolit között potenciálkülönbség alakul ki. Az anód fémből, elektronok hátra hagyásával pozitív fémionok mennek az oldatba, tehát a fém töltése az oldathoz képest negatív lesz. Az oldatból, elektronok hátra hagyásával pozitív ionok válnak ki a katód felületén, tehát annak töltése az oldathoz képest pozitív lesz.

Galvánelem:

„A galvánelem két elektródból (fél cellából) áll. A legegyszerűbb galvánelem az, amikor a két tiszta fémelektród saját ionjait tartalmazó sóoldatba merül. A sóoldatban a bemerülő fém oxidált, pozitív töltésű kationjai és az ezeket semlegesítő anionok találhatók. Az elektródok a fémet két különböző oxidációs állapotban tartalmazzák. A lejátszódó redoxireakciót a konvenció szerint a redukció irányában írjuk fel. 

Bagdadi elemek i.e. 250 és i.sz. 250 között

Vitatott ugyan, de különböző elméletek és megközelítések arra engednek következtetni, hogy már időszámításunk hajnalán létezhetett a technológia alapja. Bagdadi elemekként azokra a mezopotámiai vázákra szoktak utalni, amelyekkel egyes alternatív történészek szerint, elektromos áramot lehetett létrehozni.

A potenciálkülönbség nagysága akkora, hogy megakadályozza a további elektron átadást, így a kialakuló feszültség mértékét az anód-katód közötti elektródpotenciál egyértelműen maximálja.

Csányi féle galvánelem 1903

Egy egyszerű galvánelem az alábbi módon állítható elő: egy higított kénsavval töltött üvegedénybe egy-egy cink- és rézelektródát helyezünk el. A rézelektródából (vegyi hatás következtében) elektronok lépnek ki a kénsavba, ezzel pozitív töltésűvé válik. A cinkelektróda felületén ennek fordítottja játszódik le, az elektronok a kénsavból lépnek át, tehát itt elektrontöbblet keletkezik, azaz a cinkelektróda negatív töltésű lesz. Az elektródok töltései kiegyenlítődni igyekeznek, ezért az elektródok között feszültség mérhető, cca. 1 volt, amely a terhelés folyamán lecsökken.

Vagy még egyszerűbben:

a citromban nem csak vitamin van

A fejlesztés folyamata alatt, többféle anód/katód anyagpárosítást és azok különböző kialakítását és elrendezését vizsgáltuk meg, a lehető legnagyobb mértékű feszültségszint elérése érdekében. A célunk az volt, hogy egy olyan sósvízben (mint elektrolitban) működő energiacellát hozzunk létre, mely feszültségszintje meghaladja a 15 volt feszültséget, ezzel együtt rövid távon, akár 20 ampert, hosszú távon pedig stabilan, minimum 6 amper áramerősséget legyen képes előállítani.

az optimális anyagpárosítás (magnézium/szén) az elektromos kapcsolat kialakítását biztosító aljzatba szerelve

Szabad ionnal telített közegben működő energiacella fejlesztése során három különböző fejlesztési területre koncentráltunk.

1./ Energiacella fejlesztése:

Optimális anód/katód anyagok és azok elrendezésének kikísérletezése. Az anód/katód párosításánál a legmagasabb elektródpotenciálokat a szén/magnézium (anód pozitív/katód negatív) párosítása során voltunk képesek előállítani.

anód/katód anyag méret és elhelyezés: a magnézium rúd és a kék kosárban a szénrúd

2./ Elektronika fejlesztése:

Az energia cella által előállított egyenáram stabilizálása, a gyakorlati életben is használható feszültségszintek és áramerősségek biztosítása céljából. töltésvezérlés. Az elektronika fejlesztésénél kipróbáltunk néhány már a kereskedelemben kapható és kifogástalan működésre képes töltésvezérlő egységet, de a speciális körülményeket és az egység stabil működésének érdekében támasztott saját követelményeinknek egyik sem felelt meg.

Annak érdekében, hogy az extrém körülményeknek, széles felhasználási igényeknek megfelelő töltésvezérlést építhessünk be egységünkbe, saját fejlesztésű vezérlést kellett építeni és a cellákkal együtt folyamatosan tesztelve, tökéletesíteni.

saját fejlesztésű elektronika és vezérlés

A szabad ionnal telített közegben működő energiacella egység, mint energiatermelő blokk, a kísérleti fázisban, összeszerelés közben. A kilenc egységet tartalmazó energiablokk egységei sorba kötve.

energiacella blokk

Tesztek és a kísérleti folyamat: fizikai kísérletek során sikerült kifejleszteni azt a sósvízben (mint elektrolitban) működő energiacellát, mely feszültségszintje meghaladja a 15 voltot, és rövid távon 20 ampert volt képes leadni, mindezt pedig stabilan és a kísérletek ideje alatt hosszú távon is.

sósvizes kísérleten már átesett egységek

3./ 3D modellezés és tervezés:

A végtermék formai megjelenésének tervezése, különböző változatok kialakítása a várható vevői igények/elvárások feltérképezésével összhangban.

üzemanyagcella magnézium és szénrudainak elhelyezési modellezése 3D technológiával

Az energiacellánk felépítése:

A fejlesztés eredményeként létrehozott, gyártásra kész egység:

Energiacellák a tengervíz által átjárható dobozolásban

Egy egység, tartalmaz 9 db energia termelő cellát, maximális kapacitása: 5 V, feszültségen, 1 A áramerősség, 2,5 Watt teljesítménnyel. Az általunk fejlesztett elektronika képes szabványos feszültségszintre emelni a kijövő teljesítményeket, a piacon kapható eszközigényeknek megfelelően például telefontöltéshez 5 V, 1A, vagy egy vitorlás hajó elektromos rendszereinek alap működtetéséhez, 12 V, 2 A, vagy esetleg több egység sorba kötésével elérhető nagyobb teljesítmény is.

A szabad ionnal telített közegben működő energiacella egység alapelvén, a leghatékonyabb anód/katód párosítás ki kísérletezésével, a dimenziók növelésével (energiatermelő felületek). képesek vagyunk háztartási méretű energiacella megépítésére is.

A fejlesztés végeredménye egy olyan áramforrás, ami a tengerek mellett élő népesség számára, függetlenül a fosszilis energiahordozóktól, napsugárzási és szélviszonyoktól, éjjel nappal és a mi a legfontosabb, stabilan működni képes, állandóan alkalmazható energiaforrást biztosít, akár háztartási méretben is

Záró gondolatok

Az elkészült prototípus, és a sorozatgyártás során létrejövő termékek teljes mértékig környezetbarátnak tekinthetők, így hozzájárulnak a fenntartható környezethez. A tengervíz segítségével előállított energia megújulónak minősül, mivel semmilyen fosszilis energiahordozót nem használ a villamos energia előállításához. Nem szennyezik az élővizeket, nincs melléktermék, nincs emisszió.

A fejlesztéssel nem csak adott fogyasztókat lehet stabilan és hosszútávon ellátni villamos árammal, hanem ahol erre a külső körülmények is biztosítottak, nagyobb akkumulátor telepeket, akkumulátor farmokat is lehetne folyamatosan működtetni, ezzel kisebb – nagyobb lakóközösségek energiaellátását biztosítani, természetesen a megfelelő karbantartás mellett.

Az új prototípus révén lehetőség nyílik a tengervizes energiacella további felhasználására különböző termékfejlesztések keretében.

A jövő a megújuló energiaforrások egyre nagyobb arányú hasznosíthatósága felé mutat, amiben ez a termék és a későbbi termékfejlesztések is úttörő szerepet tudnak játszani.

Szerző: Tankó Gábor fejlesztő mérnök


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement Booking.com
 

Ipar

Átalakuló technológiai felsővezetés: a GenAI és az együttműködés a siker új kulcsa

Ahogy a mesterséges intelligencia (AI) alkalmazása felgyorsul, a technológiai felsővezetés (tech C-suite) új készségekre tesz szert, növeli befolyását és egységes megközelítést alkalmaz az üzleti transzformáció során.

A Deloitte friss felmérése, a „Deloitte Tech Exec Survey”, rávilágít, hogy a technológiai vezetők szerepe átalakul, miközben a generatív AI (GenAI) és a funkciók közötti szoros együttműködés kulcsfontosságúvá válik a sikeres üzleti átalakulásokhoz.

A technológiai felsővezetés folyamatosan fejlődik és a prioritások átalakulnak

A vállalatok gyors tempóban haladnak a technológiavezérelt üzleti modellek felé, ami a technológiai felsővezetés folyamatos átalakulását eredményezi. A felmérés szerint a megkérdezett szervezetek felénél négy vagy annál több technológiai felsővezető dolgozik, ami jelzi a technológia széleskörű és növekvő befolyását az üzleti életben. A vezetői szerepek számának bővülése kulcspillanat a szervezetek számára: érdemes átgondolni, átalakítani és megerősíteni technológiai vezetői csapataikat a jövőbeli siker érdekében.

Bár a technológiai C-suite vezetők mintegy negyede (26%) kihívásnak tartja a felelősségi körök egyértelmű meghatározását, derül ki a Deloitte Tech Exec felméréséből, a válaszadók sajátos prioritásokat jelöltek meg az elkövetkező évre, amelyek a speciális szerepükhöz kapcsolódnak:

  • CIO (Chief Information Officer): Az adatok, analitikák és az AI/ML (gépi tanulás), beleértve a GenAI-t, teljes potenciáljának kiaknázása.
  • CTO (Chief Technology Officer): Olyan technológiai megoldások és platformok tervezése, amelyek középpontjában a biztonsági, szabályozási és megfelelőségi követelmények állnak.
  • CDAO (Chief Data and Analytics Officer): Adat-, analitikai és AI-szakemberek vonzása, fejlesztése és megtartása egy AI-képes munkaerő kialakításához.
  • CISO (Chief Information Security Officer): A biztonság és a hatékonyság egyensúlyának megteremtése, miközben kiépül a vállalati kiberreziliencia és az ügyfélbizalom növelése az adatvédelem és adatkezelés átláthatóságának elősegítésével.

A technológiai vezetők szerint a szervezetek idei legfontosabb prioritásai a következők:

  • A biztonsági, adatvédelmi és reziliencia-képességek erősítése (36%)
  • Az operatív és/vagy termelési költségek csökkentése, vagy hasonló költségek mellett az érték növelése (35%)
  • Új piacokra, szegmensekbe vagy földrajzi területekre való terjeszkedés (32%)
  • A végfelhasználók vonzása, megtartása és elkötelezése (32%)

„A technológia, az AI és az adatok új távlatokat nyitnak meg a modern vállalatok előtt, de kulcsfontosságú, hogy ezek bevezetését az üzleti célok vezéreljék. A technológiai vezetők most példátlan lehetőséggel rendelkeznek, hogy a technológia, az AI és az adatok tudatos alkalmazásával hosszú távú hatást és versenyelőnyt teremtsenek. Ez a C-suite tagjainak szoros együttműködésén múlik, egy közös jövőkép mentén, amelyben a technológia a növekedés és az érték mozgatórugója.”

— mondta Takács István, a Deloitte Magyarország AI, adat- és reporttranszformációért felelős szenior menedzsere.

A GenAI által generált létszámnövekedés, a képzettségi hiányok és az együttműködés szerepe

A tehetséghiány és a képzettségi hiányok továbbra is a legfőbb akadályok közé tartoznak, amelyek befolyásolhatják a technológiai vezetők céljaik elérését. Különösen a generatív AI-hoz kapcsolódó képességek hiánya jelent komoly kihívást, mivel a technológiai vezetők 45%-a szerint ezek a legégetőbben szükséges kompetenciák szervezeteiken belül.

Annak ellenére, hogy a GenAI felvetette a jövőbeli munkaerővel kapcsolatos kérdéseket, a felmérésben részt vevő technológiai vezetők közel 70%-a számolt be arról, hogy a GenAI közvetlen válaszaként növelni fogja a technológiai funkciójuk létszámát Ez is jelzi, hogy a technológia nem helyettesíti, hanem támogatja a csapatokat.

A vezetők úgy vélik, hogy az AI a következő két évben kulcsfontosságú, keresett készségeket fog erősíteni, nevezetesen a kiberbiztonságot (56%), a felhő-orkesztálást (47%) és az adat tudományt/analitikát (39%). Az AI potenciáljával bizonyos képességek hatékonyabbá válnak, így a technológiai vezetők idejüket és figyelmüket stratégiai üzleti kezdeményezésekre fordíthatják. Bár a válaszadók szerint a GenAI készségek hiánya kihívásokat jelenthet, a többség (81%) úgy véli, hogy a GenAI jelentősen javítani fogja a technológiai tehetség toborzási erőfeszítéseit, lehetővé téve a létfontosságú létszámszükségletek kielégítését.

A felmérés eredményei alátámasztják azt a feltételezést, hogy a technológiai C-suite-nak együtt kell működnie, miközben ki kell használnia egyedi szakterületeit, hogy technológiavezérelt üzleti transzformációt érjen el.

Ahhoz, hogy az elkövetkező 18 hónapban sikeresek legyenek, a technológiai vezetők szerint három területre kell összpontosítaniuk:

  • Kapcsolatfelvétel az első vonalbeli dolgozókkal és a középszintű vezetőkkel, hogy megértsék kihívásaikat és prioritásaikat (42%).
  • A technológiai vezetők koordinálása és összehangolása a technológiai stratégia közös kidolgozásához (36%).
  • A technológia értékének mérése és üzleti szempontból történő megfogalmazása (36%).

 „A technológiai felsővezetők továbbra is jelentős elvárásváltozásokkal néznek szembe önmaguk és csapataik tekintetében. A CIO, a technológiai C-suite többi tagjával együtt, integráló szerepet tölt be az üzleti stratégia, a tehetség és az innováció terén. Miközben arra törekszenek, hogy értéket teremtsenek, összehangolják a különböző funkciók csapatait, és átvezessék szervezeteiket a gyors változásokon. A jövő sikere a tehetséggondozás, az operatív modellek, a munkamódszerek és a szolgáltatásnyújtás újragondolásának képességében rejlik.”

— tette hozzá Kiss Dániel, a Deloitte Technológiai Stratégia területének közép-európai vezetője.

A mai gyorsan változó üzleti környezetben a technológiai felsővezetés kulcsfontosságú szereplővé vált a vállalatok sikerében. Az AI, különösen a GenAI térnyerése, nemcsak új képességeket és hatékonyságot hoz magával, hanem átformálja a munkaerőpiacot is, hangsúlyozva a folyamatos tanulás és az alkalmazkodóképesség fontosságát. Az együttműködés és a holisztikus megközelítés a technológiai stratégiában elengedhetetlen ahhoz, hogy a vállalatok ne csak túléljenek, hanem virágozzanak is a digitális korban, biztosítva a hosszú távú növekedést és a piaci versenyelőnyt.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Környezetbarát rombolás

A Siemens, a Volvo és a Metzner összefogásával új korszak nyílik a zöld építőiparban.

Erlangen városában a Siemens egy olyan építési projektet indított el, amely nemcsak Németországban, hanem világszerte mérföldkőnek számít: az első ipari léptékű, teljesen elektromos bontás valósult meg kibocsátásmentes módon. A Siemens új Technológiai Campusának kivitelezése során a bontási fázis már a fenntarthatóság elveit követte, elektromos munkagépekkel, újrahasznosított anyagokkal és digitális tervezéssel.

High-tech beruházás zéró emisszióval

A Siemens 500 millió eurós beruházással fejleszt kutatási és gyártási központot Erlangenben, ahol egy 200 000 m²-es zéróemissziós campus épül. A telephely célja, hogy a technológiai vállalat ipari metaverzummal kapcsolatos munkáinak globális központjává váljon. A fejlesztés digitális ikerrel, klímasemleges energiaellátással és fenntartható épületautomatizálással valósul meg.

Elektromos bontás: technológia a környezetvédelem szolgálatában

A bontási munkálatokat a Siemens Real Estate, a Metzner Recycling és a Volvo Construction Equipment közösen valósította meg. A folyamat során két épületet bontottak le, összesen 3 300 m² alapterületen, közel 25 000 m³ térfogattal. A keletkezett 12 800 tonna anyagot szinte teljes egészében újrahasznosították, ezek a helyszínen szolgálnak alapanyagként az új építkezés során.

A hasznosítás mértéke elérte a 96 százalékot: a törmelékek például útalapként, betonhoz keverve vagy újrafeldolgozott álpadlóként nyernek új életet.

„2030-ra klímasemlegessé szeretnénk válni. Ez a projekt lehetőséget adott arra, hogy a bontás során is csökkentsük a CO₂-kibocsátást”

– mondta Daniel Bechmann, a Siemens építésvezetője.

A bontás új szabványa

A teljes munkafolyamat – az épületek belső bontásától a végső elszállításig – elektromos gépekkel történt. A projektben a Volvo haszonjárműveit használták, amelyek a bontási, anyagmozgatási, rakodási és zúzási feladatokat segítették. A lebontott építőanyagokat helyben dolgozták fel, így szinte teljesen elkerülték a külső szállítást, ezzel is csökkentve az ökológiai lábnyomot.

A projekt megvalósításához többek között a Husqvarna Construction robotizált bontási megoldásokkal és pormentesítéssel, az erlangeni városi közművek és más szolgáltatók pedig a háttér-infrastruktúra biztosításával járultak hozzá.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Értékmegőrzés és kortárs tartalom – Készül a Magyar Építészeti Múzeum és Központ

Az építészeti újrahasznosítás jegyében valósul meg a Magyar Építészeti Múzeum és Központ a Városligeti Fasor és a Bajza utca által határolt tömbben.

A munkák során az új főépület mellett két századfordulós műemléki épület és két zártsorú irodaház újul meg, valamint egy mindenki számára nyitott városi közpark is létrejön. A megvalósítás egyedi projektszervezéssel zajlik: a BIVAK és a Tér és Forma Szeged Építéstervező alkotó építészei mellett a CPM Kft. fogja össze a generál feladatokat és készítette el a műszaki dokumentációt, melynek BIM támogatását a DANU Mérnökiroda szakemberei végezték.

A megvalósuló, közel 27 500 m2 hasznos alapterületű épületkomplexum 2100 m2 kiállítóteret, 550 m2 konferencia termet és több mint 2000 m2 korszerű raktár területet foglal magába. A múzeum és dokumentumtár műtárgyai korszerű gépészeti rendszerekkel klimatizált és védett terekbe kerülnek, amelyekben hosszú távon is megoldott a gyarapodó állományok kezelése és digitalizálása. A főépület ikonikus tetőzetét 114712 darab cserép fedi majd 65 különböző színárnyalatban. Az új közpark 107 darab újonnan telepített fával, tematikus játszótérrel, vízjátékkal és vendéglátó egységekkel fogadja a látogatókat.

„A tér élménye meghatározó elem a fejlesztésben. Mindez nemcsak az új főépület egyedi fogadóterét és belső tereit jelenti, hanem a tervezett térszimulációs installációt is, ahol a látogatók megtapasztalhatják a belső terek hangulatát, érzetét meghatározó arányokat 360 fokos vetítéssel és ténylegesen megmozduló mennyezettel és falakkal”

– emeli ki Détári György DLA, a CPM társtulajdonosa és vezető tervezője.

Az épület alkotó udvara a valós méretű modellépítésen túl vetítési helyszínként is szolgálja a múzeumot akár 300 fő befogadóképességgel. „Egy korszerű múzeumban a kiállítás nemcsak a vitrinekbe helyezett statikus tárgyakról szól, hanem bekerülnek interaktív, audiovizuális élményelemek, illetve időszaki kiállítások is, amelyek flexibilis tereket igényelnek. Ahhoz, hogy ezek a lehető legjobb látogatói élményt nyújtsák, elengedhetetlen a háromdimenziós modellek által nyújtott betekintés a tervezett épületek tereibe” – emeli ki Erős Tamás, a DANU BIM szolgáltatásokért felelős partnere.

A Magyar Építészeti Múzeum és Központ tervei az értékmegőrzés és a jövőbe mutató szemlélet jegyében készültek. A múzeum építészeti koncepciójának létrehozásakor kiemelt szempont volt, hogy méltó módon képviselje a hazai építészet múltját, jelenét és jövőjét. Fontos szakmai üzenet az építészeti újrahasznosítás, a felszín feletti építés 75 %-a meglévő értékek megtartásával és újrafunkcionálásával valósul meg, az új főépület a pedig a kortárs építészeti gondolkodást képviselve illeszkedik a meglévő épületek közé. Egy ennyire komplex, sokszereplős projektnél a BIM-alapú tervezés kulcsfontosságú, a kiállítás tervezők, az épület tervezők és a megrendelő közötti kommunikációt és döntéshozatalt is segíti. A BIM modellekre építve biztosítja a tervek magas minőségét, és azt, hogy valóban az elképzelt épület valósuljon meg.

Érdekesség, hogy a bilbaói Guggenheim Múzeum úttörő szerepet játszott a virtuális épületmodellezésben, ez volt a világon az első nagy volumenű projekt, aminél Farnk Gehry és csapata a fejlett CATIA háromdimenziós modellező szoftvert használta, hogy segítségül hívja a BIM-et. A művészi kifejezésmód és a történeti jelleg miatt azonban sok szakember múzeumi és művészeti funkciójú épületek tervezése során még mindig kerüli a BIM-et, ami pedig a korszerű múzeumi tervezés alapja. „A múzeumoknál az építészet, mint művészeti kifejezőeszköz jut jelentős szerephez, de olyan kiállítás-technológia kerülhet az épületbe, ami jelentős hely-, gépészeti- és egyéb igények megvalósítását teszik szükségessé. Ezekre oda kell figyelni a BIM feladatok kapcsán is. Mi ezt a folyamatot csapatmunkaként fogjuk fel, a végrehajtási terv az összes szakággal egyeztetve, velük egyetértésben történt. A digitális modellek segítségével egyszerre több száz dologra is rá tudunk mutatni a tervben.  Ennél a projektnél 213.527 modell elem készült, az utolsó időszakban 348 ütközést, problémás részletet találtunk, melyek így még a kivitelezési folyamat előtt korrigálva lettek” – folytatja Erős Tamás.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement Booking.com
 
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Advertisement Booking.com
 

Friss