Egészség

Gyógyító erejű mesterséges intelligncia

mesterséges

A mesterséges intelligencia (MI) térhódítása feltartóztathatatlan, a technológia újabb és újabb alkalmazási területeken veti meg a lábát. Az egészségügyben az elkövetkező néhány évben várható az igazi boom.

Az MI napjainkban a viták kereszttüzében áll: szélsőséges nézetek csapnak össze, egyesek a környezeti katasztrófa felé rohanó emberiség utolsó mentsvárának tekintik, mások a fajunkra leselkedő legsúlyosabb fenyegetést látják benne. Az igazság valószínűleg a két véglet között van: a technológia önmagában sem elpusztítani, sem megmenteni nem fog bennünket, és bár tényleg vannak veszélyei, körültekintően használva hatalmas segítséget nyújthat az elkövetkező évek globális kihívásainak kezeléséhez.

Ha van terület, amelyre ez fokozottan igaz, akkor az a medicina, ahol az MI a szó szoros értelmében életeket menthet. A következőkben az MI néhány izgalmas, új gyógyászati alkalmazását mutatjuk be: olyan kutatásokat, amelyek felvillantanak valamit a technológiában rejlő hatalmas potenciálból.

Érints meg!

Minden egyes ujjvégződésünk több, mint 3000 receptort rejt, amelyek elsősorban nyomásra érzékenyek. Ezek az érzékelők elképesztően pontos képet adnak mindazon dolgok minőségéről, amelyeket ujjainkkal megérintünk, és az általuk közvetített információk kulcsszerepet játszanak a tárgyhasználatunkban. Az ilyen típusú érzékelés hiánya rendkívül megnehezíti azok életét, akik elveszítették kezüket, és testpótlással élnek. Bár ma már többfajta, rendkívül kifinomult technológiájú végtagpótlás létezik, az érintés érzékelése valamennyiből hiányzik, és visszajelzés híján a protézis viselője könnyen elejtheti, vagy összetörheti a tárgyakat.

A Florida Atlantic University kutatói ezért azt a célt tűzték ki maguk elé, hogy egy olyan, az emberi érzékeléshez közelebb álló felületet dolgoznak ki, amelyet a mesterséges kezeken lehet alkalmazni.

A szenzorok kialakításakor – a szakterületen elsőként – a folyékony fémekhez fordultak, amelyeket szilíciumalapú, rugalmas kapszulákba ágyaztak. Ez a technológia számos előnyt kínál a hagyományos érzékelőkhöz képest, ugyanis nyugtható, ruganyos, nagyon jó vezető, és a hierarchikus, többujjas taktilis (tapintási) érzékelés integrációjával új szintre emeli a mesterséges kezek intelligenciáját.

A kutatók egyedi ujjvégződéseket használtak a testpótláson, hogy megkülönböztessék a tapintási mozdulat sebességét a különféleképpen texturált felületeken. Négy különböző alaptexturát definiáltak, és ezek érzékeléséhez négy gépi tanulási algoritmust tanítottak be, amelyeket tíz, a négy alaptípust véletlenszerűen variáló, összetett felületen treníroztak.

Versengő algoritmusok

A teszteredmények azt mutatták, hogy a négy ujjvégződésen helyet foglaló folyékony fémes szenzorok együttes munkával a bonyolult, vegyesen texturált felületekkel is jól elboldogultak, ami a kutatók szerint azt jelenti, hogy a hierarchikus intelligencia új formája született meg. Ennek az intelligenciának kulcseleme volt a gépi tanulási algoritmus, amely mindegyik ujjon nagy pontossággal tudott különbséget tenni a különböző tapintási sebességek között. A fejlesztés gyakorlati alkalmazása még odébb van, de az eredmények azt ígérik, hogy a mesterséges intelligenciával megtámogatott új technológia belátható időn belül az érintés élményével ajándékozhatja meg az amputáltakat.

A kutatás egyik érdekes hozadéka, hogy a tudósok a négy különböző gépi tanulási algoritmus képességeit is össze tudták hasonlítani abból a szempontból, melyik milyen hatékonysággal segíti a felületek osztályozását. A szakemberek a „legközelebbi szomszéd” (KNN), a „tartóvektor gép” (SVM), a „véletlen erdő” (RF) és „neurális hálózat” (NN) algoritmusokat használták: a leggyorsabbnak és legmegbízhatóbbnak a textúrák felismerésében az NN bizonyult, amely 99,2 százalékos pontossággal tudott különbséget tenni a tíz bonyolult felület között, amikor a néhány ujj érzékelőről egyidejűleg érkeztek a jelek.

Matuzsálem titka

Más, nem kevésbé fontos területen is értek el jelentős sikert a University of Surrey kutatói, akik olyan kémiai anyagok felkutatására használták a mesterséges intelligenciát, amelyek lassítják az öregedést, és végső soron az emberi élet meghosszabbításának kulcsát jelenthetik.

A kémikusokból álló kutatócsoport a DrugAge adatbázisának információin alapuló gépi tanulási modellt hozott létre annak megállapítására, hogy egy vegyület meghosszabbítja-e a Caenorhabditis elegans nevű áttetsző, féregszerű kis lény életét (amelynek anyagcseréje hasonlít az emberére, viszont az életciklusa sokkal rövidebb, így jól tanulmányozható rajta a kémiai anyagok hatása).

Az MI három olyan vegyületet talált, amely nyolcvan százalékos valószínűséggel meghosszabbította a kísérleti alanyok életét. Ezek az anyagok a következők:

  • flavonoidok (növényekben található antioxidáns pigmentek, amelyek a szív- és érrendszer működését segítik)
  • zsírsavak (például az omega-3)
  • szerves oxigén (szén-oxigén kötéseket tartalmazó anyagok).

A tudósok szerint az öregedést a modern gyógyításban egyre inkább betegségek és rendellenességek sorának tekintik, és a korszerű digitális technológiák, köztük az MI segíthet megelőzni vagy lelassítani ezeknek az öregséghez kapcsolódó problémáknak a kialakulását. A modellértékű kutatás valódi jelentősége nem is elsősorban az öregedést gátló vegyületek néhány csoportjának azonosításában rejlik (a feltárt összefüggésekkel az orvosok eddig is tisztában voltak), hanem inkább abban, hogy egy izgalmas, új szakterületre terjeszti ki az MI alkalmazási körét.

A legjobb diagnoszta

A betegségmegelőzés mellett a közvetlen gyógyításban is nagy jövő előtt áll az MI: ezt bizonyítja az az ausztrál fejlesztés, amely a prosztatarák ellen indítja harcba a technológiát.

Ez a ráktípus a daganatos betegségek között világszerte az egyik leggyakoribb halálozási ok a férfiak körében, holott, ha korai stádiumában diagnosztizálják, jól gyógyítható. A férfiak azonban szeretik elhanyagolni a fizikai kontaktussal járó, nem épp kellemes szűrővizsgálatokat, és a betegséget sok esetben már csak túl későn ismerik fel.

Az ausztráliai RMIT University kutatói most egy olyan MI programot fejlesztettek ki, amelynek segítségével egy rutinszerű CT-vizsgálattal kiszűrhető a probléma. A technológia, amelynek kifejlesztésében a melbourne-i St. Vincent Hospital orvosai is részt vettek, a CT-képet kielemezve felkutatja a prosztatarák olyan apró jeleit, amelyek még egy jól képzett orvos figyelmét is elkerülnék.

A CT nem alkalmas rendszer rákszűrésre, mert jelentős mennyiségű sugárzással terheli meg a szervezetet, viszont az ausztrál kutatók MI megoldását akkor is alkalmazni lehet, ha a pácienst más okból vizsgálják az eszközzel.

A CT kiváló eszköz a csontrendszerrel kapcsolatos problémák detektálására, de a prosztata daganatának felismerése a képeken még a radiológusok számára sem egyszerű feladat. A szoftvert viszont úgy tanították be, hogy azt is kiszúrja, amin az emberi szem átsiklik.

A betanítási ciklus végére a program tudása olyan szintre fejlődött, hogy a legprofibb radiológusokat is lepipálta pontosságban, ráadásul sokkal gyorsabban dolgozott emberi vetélytársainál, és néhány másodperc alatt képes volt felismerni a korai stádiumban lévő daganatot. Sőt öntanuló képességének hála minden egyes CT-kép kielemzése tovább gyarapította tudását.
A gépi tanuláson alapuló diagnosztikai megoldás további előnye, hogy rendkívül adaptív, és másfajta képképző eszközökkel (MRI, DEXA stb.) is integrálható.

Az MI tehát felkészült arra, hogy ezernyi módon segítse a gyógyító munkáját. De vajon az egészségügyi rendszer felkészült-e rá, hogy ezt a jövőbe mutató technológiát beillessze a meglévő keretek közé?

Robbanás előtt

A COVID-19 világjárvány előtt borúlátóbb választ adtunk volna a fent megfogalmazott kérdésre, a pandémia azonban – más területekhez hasonlóan – az egészségügyben is kikényszerítette a változásokat, és felpörgette a digitális átalakulás folyamatát. Az elkövetkező években robbanásszerű fejlődésre számíthatunk, ami megmutatkozik a költésekben is: egy felmérés szerint míg 2019-ben az egészségbiztosítás és a gyógyszerészet területén mintegy 500 millió dollárt fordítottak mesterséges intelligenciára, 2024-re ez az összeg várhatólag kétmilliárd dollárra nő!

A világjárvány arra is rávilágított, milyen fontos az egészségügy gyors reagálóképessége: az MI projektek ebből a szempontból is minőségi javulást ígérnek.

A COVID-19 válság ugyanakkor az MI alkalmazásának jelenlegi korlátait is feltárta. Kiderült, hogy az algoritmusokat tápláló adatok gyenge minőségűek, az adatforrások megbízhatatlanok, és sok helyütt nincs meg a technológia alkalmazásához szükséges szakértelem. Az MI integrálásának legnagyobb akadálya nem technológiai: hiányzik az adatok összegyűjtésére és elemzésére szolgáló infrastruktúra, és az a szabvány-halmaz, amely az adatok kompatibilitását biztosítja.

Ahhoz, hogy az MI az egészségügyben is befuthassa azt a pályát, ami potenciálisan benne rejlik, mindenütt az adatvezérelt megközelítésre kell átállni, és olyan robusztus, átlátható modelleket kell létrehozni, amelyek kedvet ébresztenek a technológia alkalmazásához.

Forrás: Computerworld

Egészség

Egészségünk és gazdaságunk jövőképe: berobbant a bionika mérnöki tudománya

A globális gazdaság egyik legdinamikusabban fejlődő tudományága a bionika, a legfrissebb adatok szerint piaca 2024 és 2034 között évente átlagosan 10 %-kal fog növekedni.

Jelentőségét mutatja, hogy idén a fizikai és a kémiai Nobel–díjat is a területhez kapcsolódó szakembereknek ítélték oda. Magyarország oktatási szempontból alakítja a trendeket a bionikában.  Európában ugyanis legrégebb óta a Pázmány Péter Katolikus Egyetemen hallgatható külön mérnöki szakként a molekuláris bionika, ahol a hallgatók olyan kutatásokban és fejlesztésekben vehetnek részt, amelyek világszerte előremutatónak számítanak. Többek között látássérültek mindennapi életvitelét segítő applikációt, intelligens protéziseket, érzékelő robotikai és orvosdiagnosztikai eszközöket is fejlesztenek. 

A bionika az egyik leggyorsabban növekvő mérnöki tudományterület, a szektor a befektetők szerint is kiemelt profitábilitással rendelkezik. A The Business Research Company 2024. októberében publikált elemzése szerint piaca a 2023-as 12,39 milliárd dollárról 2024-re várhatóan 13,62 milliárd dollárra, míg 2028-ra 19,93 millió dollárra emelkedik, évenkénti átlagos 10 %-os növekedés mellett. Az egyik leginnovatívabbnak számító tudományterületen dolgozó szakemberek az emberek egészségéért és életminőségének javításáért dolgoznak. Idén a fizikai Nobel-díjat John J. Hopfield, a Princeton Egyetem kutatója és Geoffrey Hinton, a Torontói Egyetem kutatója nyerte el a mesterséges intelligencia kutatásában kulcsszerepet játszó gépi tanulásos kutatásaikért, míg a kémiait megosztva David Baker az új fehérjék tervezéséért, Demis Hassabis és John Jumper a fehérjék háromdimenziós szerkezetének mesterséges intelligencia alapú meghatározásáért kapták.

„A mesterséges intelligencia és a neurális hálózatok alapjairól nálunk már első évfolyamon tanulnak a hallgatók, később pedig olyan kutatásba is bekapcsolódhatnak, amelyben már két éve azon dolgozunk, hogy az AlphaFold elnevezésű, mesterséges intelligencia alapú rendszer segítségével a fehérjék minél pontosabb neurális hálózatrendszerét építsük föl. Az idei eredmények tükrében már kimondhatom, nálunk a diákok nemcsak az emberek életminőségét javító ismeretekre tehetnek szert, hanem már több mint 20 éve tanítjuk azt, amiért idén két Nobel-díjat is adtak”

– emeli ki Dr. Cserey György, a Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Karának dékánja.

Az egyetemen Európában elsőként 2008-ban kezdték meg a molekuláris bionika alapképzést a Semmelweis Egyetemmel közösen, ahol a hallgatók már az első évfolyamon bekapcsolódhatnak fejlesztésekbe, kutatásokba. Mivel az oktatók külföldi tapasztalattal rendelkeznek – van, aki a Harvardon, a Müncheni Egyetemen vagy éppen Oxfordban tanult –, valóban nemzetközileg jegyzett kutatásokban vesznek részt. Mindvégig támogatják az egyedi ötletek megvalósítását, akár cégalapításig eljuttatva a diákokat. Ezzel a képzés a külföldi egyetemekkel összevetve is kivételesnek számít. A tanulmányok során olyan tudományterületekkel találkozhatnak, mint a számítógéppel segített gyógyszeripar, az orvosi biotechnológia, bioinformatika, bioprotézis-fejlesztés vagy a nanotechnológia.

A biológiai és műszaki tudományokat ötvöző bionika az egyik legfiatalabb, ám leggyorsabban fejlődő tudományterület nagyon erős ipari háttérrel, hiszen a legnagyobb orvosi képalkotó, gyógyszer- és rehabilitációs eszközöket fejlesztő cégek és a robotika is hasznosítják a terület innovációit. A szakemberek olyan eszközöket képesek fejleszteni, amelyek korábban a science fiction filmekben voltak láthatók. A PPKE-ITK hallgatói folyamatosan fejlesztik a már több tízezer ember által használt LetSee applikációt, amely a látássérültek mindennapos problémáira ad hatékony megoldásokat, a kutató-fejlesztői csapat már több nemzetközi technológiai versenyen bizonyította, hogy fejlesztésük a legjobb eszközként javítja a látássérültek életminőségét. Intelligens protéziseken dolgoznak; egykori hallgatójuk, Tasi Benedek például az egyetemi évei alatt kezdte el fejleszteni azt az anatómiailag pontos robotkezet, amely nem a gép, hanem az ember oldaláról közelíti meg a művégtagok kérdéskörét. Saját vállalkozásában mai napig együttműködik az egyetemmel, hallgatónak is gyakorlati helyet adva, és olyan kérdéseken dolgoznak, hogy a robotkéz vezérléséhez hogyan lehet bionikus ember-gép interfészt fejleszteni, milyen szenzorokat lehetséges integrálni a bőrbe, vagy hogyan lehet érzékeny, ám mégis tartós borítást készíteni a protézisre.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Tovább

Egészség

Mini LED kijelzőtechnológiás sebészeti monitort dobott a piacra az LG az endoszkópos és laparoszkópos beavatkozásokhoz

Az LG Electronics (LG) megkezdte új, 31,5 hüvelykes sebészeti monitorjának (32HR734S modell) piaci bevezetését.

A sebészeti endoszkópok, laparoszkópos kamerák és más kompatibilis orvosi képalkotó rendszerek képeinek színes megjelenítésére tervezett LG monitor megkapta az 510(k) engedélyt az amerikai FDA-tól, azaz már az Egyesült Államokban is forgalmazható. A Mini LED technológiájú kijelző pontos színszabályozást garantál széles színtartománnyal és optimalizált tisztaságú képpel.

A 32HR734S monitor egy 31,5 hüvelykes, 4K felbontású (3840 x 2160) Mini-LED kijelző, amely több ezer apró LED-diódát használ háttérvilágításként. Az LG orvosi monitora 2 000 cd/m² csúcsfényerőt és 1 000 000:1 értékű dinamikus kontrasztarányt biztosít, a tiszta, részletes képek és az erős kontraszt érdekében pedig 1536 külön háttérvilágítási zónát kezel. A kijelző megbízható színkonzisztenciát garantál az egész képernyőn, a DCI-P3 színtér 98 százalékos lefedettségével.

A lenyűgöző képi teljesítmény mellett a 32HR734S a sebészeti környezetben szükséges tartósságot és megbízhatóságot is garantálja. Az optikai ragasztás (a kijelző és az előlap közötti közvetlen kötés), és az előlap csillogás-, tükröződés-, valamint ujjlenyomat-gátló bevonatai miatt az LG 32HR734S 4K sebészeti monitoron mindig tökéletesen jól láthatóak a képek, még az erősen megvilágított műtőkben is. A termék elülső és hátsó oldala is víz- és porálló (IP45-, illetve IP32-besorolás), így a monitor a műtétek során esetlegesen a készüléket érő környezeti hatások között is zavartalanul működik.

A 32HR734S az első olyan LG sebészeti monitor, amely tartalmazza az innovatív, ún. Clone Screen funkciót. A Clone Screen-el a felhasználók a 32HR734S-en megjelenő képet megkettőzhetik egy második monitoron (HDMI-n keresztül csatlakoztatva), ami jelentősen megkönnyítheti a műtéti folyamatok hatékonyságát és a kommunikációt olyan helyzetekben, amikor több egészségügyi szakembernek kell ugyanazt a képet látnia.

A kijelző ún. Mirror üzemmódja a képernyőn megjelenő képet vízszintesen tükrözi, míg a Rotation üzemmód 180 fokkal elforgatja a képet a műtéti kamera tájolásának megfelelően. A monitor Picture-in-Picture (PIP) és Picture-by-Picture (PBP) funkciót is biztosít, ez utóbbi akár négy különböző képforrás egyidejű megjelenítését is lehetővé teszi. Az orvosok és egészségügyi szakemberek így egyszerre több – például laparoszkópos és fluoroszkópos – képet nézhetnek, miközben még a beteg életjeleit is figyelemmel kísérhetik ugyanazon a kijelzőn.

„A fejlett Mini LED technológiával rendelkező 32HR734S a sebészeti környezetben szükséges kiváló képminőséget és kényelmi funkciókat kínálja”

– mondta YS Lee, az LG üzleti megoldások divíziójának alelnöke és IT termékekért felelős vezetője.

„Úgy véljük, hogy új modellünk jelentősen hozzájárul majd a műtéteket végző és a műtéteknél segédkező egészségügyi szakemberek munkájának hatékonyságához.”


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Tovább

Egészség

A modern szájsebészeti eljárások fejlődése

uniklinik szájsebészet
Képek forrása: Freepik

A fogászati technológia elképesztő sebességgel fejlődik, ami számtalan előnnyel jár a  páciensek és a fogorvosok számára is. A csúcstechnológiás képalkotó rendszerektől az innovatív kezelésekig az új fejlesztések teljes mértékben átalakítják a fogászati ellátást, amit ma már a precizitás, a hatékonyság és a betegközpontú megközelítés jellemez. Milyen újdonságok teszik egyre kényelmesebbé és pontosabbá a szájsebészeti eljárásokat?

Digitális képalkotás a diagnosztika precizitásáért

A modern szájsebészet egyik alappillére a digitális képalkotó technológiák integrálása, amelyek forradalmasították a diagnosztikai pontosságot. A kúpnyalábos komputertomográfia (CBCT) kiemelkedik az újítások közül, mivel háromdimenziós, nagy felbontású képeket nyújt a szájüreg, az állkapocs és az arcüreg struktúráiról. Ez a technológia lehetővé teszi a szájsebészek számára, hogy eddig nem látott precizitással állítsanak fel diagnózisokat, ami elősegíti a korábbinál célzottabb kezelési tervek elkészítését.

A digitális képalkotás emellett hozzájárul ahhoz is, hogy a szájsebész más egészségügyi szakemberekkel is hatékonyan együtt tudjon működni a páciens gyógyulásának érdekében. A digitális adatok zökkenőmentes megosztása megkönnyíti a különböző szakterületek közötti konzultációkat, biztosítva ezáltal az összetett fogászati és orvosi igényű betegek átfogó ellátását.

Számítógépes tervezés és gyártás (CAD/CAM)

A számítógépes tervezés során a speciális szoftverek 3D modelleket hoznak létre többek között a protézisekről és az implantátumokról, majd a digitálisan megtervezett fogpótlásokat speciális gépekkel, például 3D nyomtatókkal vagy CNC (számítógépes numerikus vezérlésű) marógépekkel készítik el.

A szájsebészek így ma már személyre szabott megoldásokat hozhatnak létre, optimalizálva mind a formát, mind a funkciót. Az intraorális szkennelés és a digitális lenyomatok pedig felváltják a hagyományos fogászati lenyomatokat, kényelmesebb élményt nyújtva a pácienseknek, miközben a sebészeket rendkívül pontos adatokkal látják el.

Lézeres kezelések és minimál invazív eljárások

A lézertechnológia megjelenése a minimál invazív szájsebészet új korszakát nyitotta meg. A lézeres kezelések precizitást biztosítanak a lágy- és keményszöveti eljárásoknál, lehetővé téve a sebészek számára, hogy az összetett eljárásokat csökkentett vérzés, kisebb fájdalom és gyorsabb gyógyulási idő mellett végezzék el.

A minimál invazív technikák hozzájárulnak az egészséges szövetek megőrzéséhez is, ami összhangban van a betegellátás holisztikus megközelítésével, ahol nemcsak a meglévő problémák kezelésére helyeznek hangsúlyt, hanem a szájüreg általános egészségének megőrzésére is.

uniklinik fogászat

Uniklinik Fogászat: professzionális szolgáltatást nyújtó fogászat Budapesten

Az Uniklinik Fogászat és Implantációs Központ egy profi fogászat Budapest szívében. Elkötelezett orvoscsapatunk tagjai között a fogászat összes ágazatának szakértője megtalálható! Szakorvosaink nemcsak a konzerváló fogászat, valamint a fogpótlástan kiváló szakértői, de az esztétikai fogászat és a fogszabályozás területén is az élen járnak. Nap mint nap azért dolgozunk, hogy ön és családja a lehető legmagasabb színvonalú fogászati szolgáltatásban részesüljön. Keressen fel bennünket, hiszen online bejelentkező rendszerünkkel gyorsan és kényelmesen foglalhat időpontot, így haladéktalanul elkezdhetjük a munkát, hogy javítsunk életminőségén.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Tovább
Hirdetés
Hirdetés
Hirdetés Hirdetés

Facebook

Hirdetés Hirdetés
Hirdetés Hirdetés

Ajánljuk

Friss