Connect with us
Hirdetés

Ipar

Idén még nehezebb feladványok várták a RobonAUT versenyzőit

Kalózrobottal és árvízzel is megküzdöttek a műegyetemi mérnökhallgatók autonóm, önműködő járművei az idei RobonAUT döntőben.

Ismét RobonAUT rajongókkal telt meg a „Q” épület aulája: 2024. február 10-én immáron 15. alkalommal rendezték meg az autonóm robotjárművek versenyének döntőjét.

A rendezvényt Tevesz Gábor főszervező, a RobonAUT egyik alapítója, valamint a BME Villamosmérnöki és Informatikai Kar (BME VIK) Automatizálási és Alkalmazott Informatikai Tanszék címzetes egyetemi tanára nyitotta meg. A versenyző csapatokat és a megmérettetés érdeklődőit köszöntve elmondta, hogy másfél évtizeddel ezelőtt fiatal kollégáival egy olyan kihívást hívtak életre, amelyben az akkor indult villamosmérnök mesterképzés hallgatói a gyakorlatban is megmutathatják, mit tanultak az egyetemen. „Az elmúlt 15 évben rengeteg változáson és fejlődésen ment át a RobonAUT, ahogyan a verseny során alkalmazott technológiák is rohamléptékben fejlődtek. Ma már a hallgatóknak sincs olyan ’könnyű’ dolguk, mint az első versenyzőknek, a feladatok jóval komplexebbek, nehezebbek az előző évek feladványainál” – fogalmazott Tevesz Gábor. Megnyitója zárásaként köszöntötte azokat a vállalatokat és képviselőiket is, akik már évek óta vagy akár új szponzorként támogatják a versenyt, nem mellesleg szükségük van arra a szakembertudásra, amellyel a karon végző, illetve a versenyen induló mérnökhallgatók rendelkeznek.

A 2024-es döntőre 9 csapat kvalifikálta magát: 6 junior és 3 senior formáció mérkőzött meg egymással a különböző futamokban, ahol összesen 110 pontot szerezhettek a hallgatók. A versenyzők közel fél évet dolgoztak az autonóm robotjármű megtervezésén és megalkotásán. Megérte a befektetett munka, ugyanis a kvalifikáció során összegyűjtött pontok is számítottak: összesen 10 pontot lehetett szerezni a felkészülés alatt nyújtott teljesítményből. A szurkolók is segíthették kedvenceiket: a közönségdíjasoknak max. 10 pont járt a külcsínért.

A döntőben idén is gyorsasági és ügyességi kategóriában kellett helyt állniuk az önállóan működő (autonóm) járműveknek. A csapatok mindössze egy percet kaptak arra, hogy előkészítsék versenyautóikat a két, egymás után következő futamra.

A „Q” épület aulájában felállított ügyességi pálya úthálózatát (labirintust) előre ismertették a versenyzőkkel. A robotautókat egy rádiós startkapu segítségével indították útjukra. Az autóknak a pálya csomópontjai mentén található kapukat (összesen 17 db) kellett felfedezniük és a lehető leggyorsabban bejárniuk a labirintust. A feladványt több „akadályozó” is nehezítette: ki kellett kerülni a pályán lassú, ám folyamatos mozgásban lévő kalózrobotot. Ha a kalózrobot már áthaladt egy kapu alatt, akkor csökkent az adott kapu érintéséért járó pontszám is (2 pont/kapu). A kalózrobot mindenkori pozícióját a szervezők rádiójelekkel sugározták.

További nehézség volt, hogy a futam egy adott pillanatában „árvíz” öntötte el a pályát, ami blokkolta a kapukat, vagyis azok érintéséért ideiglenesen nem járt pont, ilyenkor a kalózrobot is egyhelyben állt. Az „árvizet” egy képzeletbeli zsilip, vagyis egy libikóka segítségével lehetett semlegesíteni: a robotautóknak fel kellett menniük a rámpán, majd átbillenteni a libikókát. Ezzel megszűnt az „árvíz”, elindult a kalózhajó, és a kapu érintéséért újból járt a megérdemelt jutalompont. A további manővereket is értékelték a szervezők: a libikókán való sikeres egyensúlyozásért 10 pontot, a sávváltásért 6 pontot adtak. Ha a csapattagoknak be kellett avatkozniuk a versenybe, azért viszont alkalmanként 5-5 pont levonása járt. Az ügyességi kört a rendezők akkor tekintették teljesítettnek, ha elfogytak az érintendő kapuk vagy lejárt az 5 perces időkeret.

A gyorsasági pályán a legjobb köridő elérése a volt a cél: maximum 6 kört tehettek meg az autók, amelyek közül a leggyorsabb számított az értékelésnél. A robotautók egy önmagába záródó vezetővonalat önállóan követtek, és itt is számolniuk kellett a gyorsulást hátráltató pályaszereplőkkel. Együtt mozogtak az ún. „safety carral”, amelyet meg kellett előzni, kikerülni a minél gyorsabb köridőre törekvő versenyautóknak. A safety car követéséért 6 pont, kétszeri megelőzéséért összesen 10 pont járt. A pálya nyomvonalát és a gyorsításra kiváló lehetőséget adó egyenes szakaszok helyét a hallgatók a döntő előtti napokban megismerhették. A külső segítséget itt is büntették: alkalmanként 2 pont levonás járt az emberi beavatkozásért.

A megmérettetésre vállalkozó fiataloknak minden évben komplex, több műszaki, mérnöki területet is érintő tudásról kell tanúbizonyságot tenniük. Ismerniük kell a mikrokontrollerek, a szenzorok vagy az áramkörök világát, szükségük van irányítástechnikai, automatizálási és programozási ismeretekre is. A verseny révén (is) szert tehetnek olyan elméleti és gyakorlati tudásra, amelynek forintra váltható hasznát vehetik majd az álláskeresés során olyan vállalatoknál is, amelyek autonóm járművek fejlesztésével vagy robotikával foglalkoznak.

Az elkövetkezendő évek technológiai forradalmának egyik fontos sarokpontja egyebek mellett az önműködő robotjárművekben rejlő lehetőségek kiaknázása. A kutatók prognózisa szerint az egészségügy, a járműipar és a logisztika után a mindennapokban is általánossá válhat az emberi beavatkozást nem igénylő gépezetek megjelenése. E dinamikusan fejlődő tudományterületet a hazai felsőoktatási intézmények közül elsőként helyezi középpontba a BME, amely évek óta tudatosan nyomon követi a robotika újításait, ami a műegyetemi mérnökképzésen gyakorlati ismeretek formájában is megjelenik.

  • A közvetítés teljes terjedelmében visszanézhető a rendezvény honlapján, az esemény érdekes szemelvényeiből a videók menüpont alatt látható válogatás.
  • A RobonAUT 2024 hallgatói mérnökverseny eredményei
  • A junior csapatok kategóriájában a következő csapatok állhattak fel a dobogóra:
  • Junior 1. helyezett: AUTofRange (Kazup Dániel, Kovács Tamás Barnabás, Petrőtei Tamás József – MSc mechatronikai mérnök)
  • Junior 2. helyezett: Safety Third (Csermák Ádám Barna, Horváth Máté, Kis Mihály Bence – MSc villamosmérnök)
  • Junior 3. helyezett: WorkAUT (Fent István, Garad Ágoston, Vepperi Virág – MSc villamosmérnök)
  • Az összesített 1. helyezést szintén a junior kategória győztese, az AUTofRange csapat szerezte meg, díjuk egy Lamborghini élményvezetés lett.
  • A legtöbb közönségszavazatot a Safety Third csapat kapta.
  • Az eseményről készült fotók a SPOT Fotókör honlapján is elérhetők.

BME VIK RobonAUT megrendezésének ötlete eredetileg Tevesz Gábor címzetes egyetemi tanár és doktoranduszokból álló csapatának egyik találkozóján vetődött fel 2009-ben. Az alapgondolatot az Eurobot nemzetközi robotikai verseny adta, de kapcsolódik a karon mesterképzésben tanulók „Robotirányítás rendszertechnikája” című tantárgyához is. A megmérettetéssel az egyetem célja a hallgatók gyakorlati ismereteinek bővítése mellett a vállalati szektor képviselőivel való kapcsolatteremtés is. A kurzus elvégzésére évről évre javarészt villamosmérnök, mérnökinformatikus és mechatronikai mérnök szakos hallgatók vállalkoznak, akik 3 fős csapatokban alkotnak egy fél éven át közösen dolgozó formációt.A kihívás lényege, hogy a versengő csapatoknak úgy kell átalakítaniuk egy modellautót, hogy az képes legyen emberi beavatkozás nélkül, a lehető legrövidebb idő alatt teljesíteni egy ügyességi akadálypályát és egy gyorsasági versenyfutamot. A feladatok részletes leírása megtalálható a verseny honlapján.A kezdetek óta közel 200 hallgatói csapat (3 fős) vett részt a versengésben, többen közülük mára már a szakmai megmérettetést támogató vállalatok munkatársai, fejlesztői lettek.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Ipar

Itt az utolsó esélyünk a GMO-k kontrollálására

Legkorábban már március elején elfogadhatja az Európai Parlament azt a rendelet-tervezetet, ami lényegében megszünteti a hatósági kontrollt és nyomon követést az új géntechnológiával készült, génmódosított termékek (új GMO-k) felett. Aki ezzel nem ért egyet ‒ legyen szó szervezetről vagy magánszemélyről ‒ még van lehetősége jelezni ezt a magyar európai parlamenti képviselők felé, akik csak akkor tudnak hatékonyan fellépni a tervezet jelen formája ellen, ha megvan hozzá a megfelelő társadalmi támogatottságuk.

„A géntechnológia olyan eljárás, amit lehet felelősen és felelőtlenül használni, illetve elfogadni vagy elutasítani, mindez döntés kérdése. Ökológiai gazdálkodókat minősítő szervezetként mi teljes mértékben elutasítjuk a génmódosítás élelmiszeripari és agrárfelhasználását, mert nem ebben látjuk a megoldást, de elfogadjuk, ha másoknak erről más a véleményük”

‒ vezette fel a problémát dr. Roszík Péter címzetes egyetemi docens, a Biokontroll Hungária Nonprofit Kft. vezetője.

A szakértő azonban azt már elfogadhatatlannak tartja, hogy a rendelet épp a döntés lehetőségét vonná meg az emberektől és intézményektől azzal, hogy sem a biztonsági ellenőrzés, sem a nyomonkövethetőség nem lenne kötelező ezekre a termékekre a továbbiakban, ahogy a csomagoláson sem kellene feltüntetni, hogy a termék génmódosított alapanyagokból készül. Ezzel – véleménye szerint – sérülne a fogyasztók önrendelkezési joga: információ híján nem mérlegelhetnék, mit szeretnének enni és mit nem, és ez csak az egyik komoly probléma.

A szervezet szerint ugyanis a nemesítők és termelők sem tudnának dönteni a vetőmaghasználatról. A jelöletlen termékek például megnehezítenék a biogazdálkodást, ahol tilos a GMO-k alkalmazása, ideértve az új technológiájú GMO termékeket is.

Legalább ilyen jelentős kockázat, hogy a GMO vetőmagot előállító cégek szabadalmaztathatnák a vetőmagokat, így nagy multinacionális cégek határozhatnák meg, mit vessenek a gazdák, mit egyenek a fogyasztók. Azok a termelők, akik olyan vetőmagot használnak, amely hordozza a cég által levédett tulajdonságokat, akár perelhetőek lennének, ha azt nem az adott cégtől vették.

Végül és messze nem utolsósorban a biztonsági ellenőrzés kötelezettségének megszűntetése azzal járna, hogy alapvetően ezen GMO-t elállító cégek jóérzésén vagy költési hajlandóságán múlna, hogy mennyi és milyen alapos vizsgálatnak vetik alá ezeket a termékeket és terményeket a forgalmazás előtt. Nyilván szándékosan senki nem okoz kárt, de a GMO közép- és hosszú távú hatásairól eddig nem készültek kellően kimerítő vizsgálatok. Ha a rendelet átmegy, már a rövid távú hatásokban sem lehetünk majd biztosak.

„Mindez messze nemcsak a hazai biogazdálkodók, vagy a Biokontroll véleménye. Számos holland, német, francia, olasz és más tudományos intézet figyelmeztet a veszélyre”

‒ tette hozzá a szakember.

Nagyon úgy néz ki, hogy a rendelet ezen formáját ellenzők egyetlen dolgot tehetnek: csatlakozhatnak a tagállamok állampolgárainak azon tömegéhez, akik írásban fejezik ki szándékukat és véleményüket a követhetetlen GMO-használat ellen. Ha sikerül elérni a kellő létszámot, a kötelező jelölés és ellenőrzés megtartása talán elérhető. Erre a levélírásra számos szervezet, így a Biokontroll is lehetőséget ad honlapján a https://www.biokontroll.hu/vedjuk-meg-a-gmo-mentes-mezogazdasagot/ címen, ahol a kezdeményezéshez csatlakozni kívánók azt is bejelölhetik, név szerint mely képviselőknek szeretnék elküldeni a levelet.

„Bízunk benne, hogy minél többen kifejtik majd ellenvéleményüket, mert ha a tervezet átmegy, olyan szellemet engedünk ki a palackból, amit nem lehet újra kontroll alá vonni. A GMO termelésben érintett nemzetközi cégek eddig is mindent megtettek az üzleti érdekeik érvényesülését gátló jogi biztosítékok lebontására. Reméljük, ezt a kísérletet is sikerül közösségi összefogással megakadályozni”

‒ zárta szavait Dr. Roszík Péter.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

DfAM Fusionben: topológia optimalizálás additív gyártáshoz – ADMASYS HU webinár

Az additív gyártás összes előnye csak additív szemléletű tervezéssel használható ki. Az ADMASYS HU online webinárja bemutatja, hogyan alkalmazható a topológia optimalizálás az Autodesk Fusion környezetben és miért ideális páros ehhez az SLS technológia a Formlabs Fuse 1+ 30W rendszerrel – valós mérnöki példán keresztül.

A topológia optimalizálás gyakorlati választ ad egy klasszikus mérnöki dilemmára: hogyan csökkenthető az anyagfelhasználás és a tömeg úgy, hogy az alkatrész teherbírása üzembiztos maradjon. Ez a megközelítés különösen jól érvényesül SLS technológiával, ahol a lecsupaszított, bonyolult geometria nem többletköltséget, hanem tényleges költségcsökkenést eredményez.

👉 Regisztráció ezen a linken >>

Az ADMASYS HU február 26-án gyakorlatias online webinárt szervez, amely kifejezetten azoknak a mérnököknek szól, akik Fusiont használnak, és szeretnének szintet lépni az additív gyártásra tervezés (DfAM) területén. A résztvevők egy valós alkatrészen keresztül követhetik végig a teljes munkafolyamatot: a végeselemes szimulációtól és optimalizálástól egészen a gyártás-előkészítésig.

A webinár főbb témái:

  • Additív gyártásra tervezés (DfAM) és topológia optimalizálás mérnöki alapjai
  • Végeselemes szimulációk értelmezése: terhelések, peremfeltételek, anyagmodellek
  • Topológia optimalizálás lépésről lépésre Fusionben egy valós alkatrészen
  • Gyártástechnológiai megkötések és optimalizálási célok helyes beállítása
  • Gyártás-előkészítés SLS nyomtatáshoz a Formlabs PreForm szoftverben

Időpont: 2026. február 26. (csütörtök)

Időtartam: 15:00–16:00 (CET)

Előadó: Kőcs Péter – full-stack engineer (Shapr3D, Ideaform), az ADMASYS HU 3D Akadémia oktatója

👉 Regisztráljon ezen a linken >>

A webinár ajánlott minden olyan tervezőnek és mérnöknek, aki Fusionben dolgozik, és szeretné már a tervezési fázisban kihasználni az additív gyártás műszaki és gazdasági előnyeit.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Újfajta védelmi megoldás az áramhálózatok számára

Akár 60 hardveralapú védelmi készülék kiváltható virtualizációval.

Az informatikában már bizonyított virtualizáció a villamosenergia-hálózatokban is növekvő szerepet kap. Egy most bemutatott új megoldással felgyorsítható az áramhálózatok bővítése, és csökkenthető az alállomások épületeinek helyigénye.

Az új Siprotec V egyetlen, szerveralapú megoldásban egyesíti akár 60 darab, hardveralapú Siemens Siprotec 5 készülék funkcionalitását. Ezek a széleskörűen használt intelligens védelmi- és mezőirányítókészülékek folyamatosan monitorozzák az elektromos hálózatot, hiba (például rövidzárlat) esetén pedig lekapcsolják az érintett szakaszt, biztosítva ezzel a hálózat további megbízható működését.

A virtualizációnak köszönhetően a Siprotec V lehetővé teszi alállomási védelem- és irányítástechnikai, valamint kommunikációs konfigurációk teljes körű digitális tesztelését, még az üzembe helyezés előtt. Ez nem csupán leegyszerűsíti a telepítést, felgyorsítja a tesztelést és minimalizálja a hibák számát, de gyors alkalmazkodást tesz lehetővé a változó rendszerkövetelményekhez, a hardver korlátaitól függetlenül. Ezáltal megkönnyíti a szoftverfrissítések, javítások és funkcionális bővítések zökkenőmentes bevezetését, valamint a jelenlegi és jövőbeni kiberbiztonsági szabványoknak való megfelelést.

A hardvereszközök kiváltásával ráadásul kevesebb kapcsolószekrényre, rézkábelre, illetve egyéb fizikai eszközre van szükség. Így alállomásonként a beruházási (CAPEX) költségek 25 százaléka, valamint a telepítéssel és anyaghasználattal járó szén-dioxid-kibocsátás fele megspórolható, miközben az energiaszolgáltatók a teljes életciklusra vetített költségek akár 20 százalékát meg tudják takarítani.

A Siprotec V továbbá lehetővé teszi fejlett mesterségesintelligencia-alkalmazások futtatását, közvetlenül az alállomási környezetben, így az áramszolgáltatók valós idejű betekintést, prediktív elemzéseket és jobb döntéstámogatást kaphatnak.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement Hirdetés
Advertisement
Advertisement
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Advertisement

Friss