Connect with us

Mozgásban

Nagysebességű oválpálya-elemet építenek a ZalaZONE járműipari tesztpályán

Várhatóan 2025 tavaszára készül el teljes egészében a Széchenyi Egyetemi Csoporthoz tartozó ZalaZONE járműipari tesztpálya új része, a nagy sebességű oválpálya-elem (High-Speed Oval), amelyen 250 km/h sebességig terjedő teszteket tudnak majd végezni a szakemberek.

Egy különleges SMB Strabag Max Bögl aszfaltozó géppel végezték el a 47 fokos dőlésszögű parabola kanyarok kivitelezési munkálatait. A világon csupán két speciális géplánc létezik, amely alkalmas parabolakanyarok építésére.

A ZalaZONE a 4500 méter hosszú oválpálya építésénél a világon egyedülálló, innovatív technológiákat alkalmaz. A gép lehetővé teszi a meredek, döntött parabola kanyarok precíz és egyenletes kialakítását. A teljes folyamatot számítógépes vezérlés irányítja, ami biztosítja a hibátlan kivitelezést. Az SMB Strabag Max Bögl aszfaltozó gép fejlett technológiája gondoskodik arról, hogy a pálya ívei tökéletesen simák és alakpontosak, azaz geometriailag is precízek legyenek, ezzel garantálva a teszteléshez szükséges pontos adatokat, méréseket.

Az oválpálya a kialakításának köszönhetően lehetővé teszi azt, hogy akár 250 km/h sebességig végezzenek rajta teszteket. Ezen nagysebességű tesztek számos csoportba sorolhatók. Az aerodinamikai teszteken a járművek légellenállását és aerodinamikai tulajdonságait vizsgálják. A hajtáslánc-teszteken a hosszú, folyamatos nagy sebességű haladást tanulmányozzák. Ilyenkor a hajtásláncok tartóssága és teljesítménye vizsgálható maximális terhelés alatt. A hűtőrendszerek vizsgálata is fontos nagy sebességnél, amikor a hűtőrendszerek teljes terhelés alatti működését is meg lehet figyelni, különösen hosszabb időtartamú, folyamatos terhelés alatt.

A gumiabroncsok és a futómű teszteléséhez a folyamatos magas sebesség és a döntött kanyarok ideálisak az abroncsok és a futóművek stabilitásának, valamint tartósságának mérésére. A járműstabilitás és kezelhetőség vizsgálatakor a 47°-os dőlésszögű kanyarok segítenek a járművek stabilitásának és irányíthatóságának tesztelésében extrém sebességek mellett. Az autonóm járművek nagysebességű tesztelésekor ezen rendszerek nagy sebességnél történő működését elemzik. Versenyautók kipróbálására is alkalmas az oválpálya, amely ideális helyszín lehet versenyautók teljesítményének és stabilitásának tesztelésére is.

– A nagysebességű oválpálya elkészültével a ZalaZONE Európában egyedülállóan széles termékportfóliót tud felmutatni a hagyományos tesztek és az új technológiák területén is – emelte ki Hamar Zoltán, a járműipari tesztpályát üzemeltető cég, az AVL-ZalaZONE Próbapálya Kft. ügyvezető igazgatója:

A tesztpálya kialakítása során az iparági követelmények vezérelték a tervezést, azzal a céllal, hogy betöltse az európai piacokon meglévő kapacitás és funkcionális hiányosságokat. A ZalaZONE járműipari tesztpálya folyamatosan fejleszti szolgáltatásait, hogy megfeleljen a jövő mobilitási kihívásainak. A szolgáltatási portfólió különleges kombinációja a hagyományos dinamikus tesztmoduloknak, valamint a legújabb technológiai megoldásoknak, mint például az ADAS (vezetéstámogató rendszerek) felület, a 15 hektáros tesztváros (Smart City), az autópálya modul és a jelenleg épülő oválpálya.

A 250 hektáron elterülő ZalaZONE, Európa legújabb, legfejlettebb autóipari tesztpályája, amely Zalaegerszeg mellett, Nyugat-Magyarországon, az osztrák határ közelében található. A tesztpálya egyedülálló lehetőségeket kínál azon autógyártóknak és autóipari beszállítóknak, akik a járművek fejlesztését, tesztelését a legmodernebb körülmények között kívánják elvégezni. A fejlesztési célú tevékenységek mellett a tesztpálya konferenciahelyszínként és vezetéstechnikai pályaként is funkcionál.

A ZalaZONE járműipari tesztpálya lehetőséget biztosít különböző típusú járművek – személyautók, teherautók, buszok, speciális járművek és motorkerékpárok – széles körű tesztelésére. A pályát nem csak a járművek dinamikai tesztelésére és élettartamának vizsgálatára tervezték, hanem a legújabb fejlett vezetéstámogató és autonóm funkciók fejlesztésére is. Az intelligens közlekedési rendszerek és az 5G technológia tesztelése is fontos szerepet kap a ZalaZONE infrastruktúrájában.

A ZalaZONE együttműködik oktatási intézményekkel is annak érdekében, hogy azok valós ipari kutatási és fejlesztési projektekben vegyenek részt. Ez a stratégiai partnerség lehetőséget biztosít a diákok számára a gyakorlati tapasztalatok széles körű megszerzéséhez. Ez támogatást nyújt ahhoz, hogy az autóipar jövőjének kiváló szakembereivé válhassanak.

A ZalaZONE nemcsak egy tesztpálya, hanem innovációs központ is, amely hozzájárul az autóipari oktatás, kutatás és fejlesztés fejlődéséhez, elősegítve az ipar igényeire adott kreatív megoldásokat és a jövőbeli mobilitás fejlődését.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Mozgásban

Bridgestone abroncsokon hasít az új Porsche Macan Electric és Panamera

A Bridgestone-t választotta a Porsche, hogy egyedi gumiabroncsokat fejlesszen az új Macan Electric és Panamera modelljeihez.

Mostantól mindkét jármű egyedi tervezésű Bridgestone Potenza Sport ultranagy teljesítményű gumiabroncsokkal kapható. A Porsche harmadik generációs sportos luxusszedánja, a Panamera személyre szabott Bridgestone Blizzak LM005 abroncsokkal is felszerelhető – ez a Bridgestone első téli gyári első szerelése a neves autómárka számára.

„A Porsche Cayenne-en való együttműködésünk után új utat nyitunk partnerségünkben, hogy olyan prémium gumiabroncsokat kínáljunk, amelyek hozzájárulnak az új Porsche modellek vezetési élményének fokozásához”

– nyilatkozta Steven De Bock, a Bridgestone EMEA régiójának OE alelnöke. „Két „első alkalmat” is ünnepelhetünk – a Panamerához tervezett Bridgestone OE (eredeti gyári felszerelés) abroncsot, valamint az első, kifejezetten elektromos Porsche modell számára fejlesztett abroncsunkat a Macan Electrichez. Izgalmas bemutatni, hogy képesek vagyunk olyan prémium felszerelések széles választékát biztosítani, amelyek segítenek a Porschét vezetőknek abban hogy a legtöbbet hozzák ki ebből a két hihetetlen, ugyanakkor nagyon is különböző autóból.”

Porsche-teljesítmény növelése az első teljesen elektromos SUV-jában

A Porsche Macan Electric egyedi Potenza Sport gumiabroncsa olyan futófelületet és keverékkialakítást alkalmaz, amely fokozza a jármű dinamikus sportos teljesítményét, miközben képes kezelni az elektromos városi szabadidő-terepjáró (SUV) nagy súlyát és nyomatékát. A Bridgestone zászlóshajójának számító, ultranagy teljesítményű gumiabroncsa a Macan Electric egyedi követelményeihez igazítva maximalizálja a kezelhetőséget száraz és nedves úton, valamint nagy sebességnél egyaránt. Mindez a maximalizált fékezési teljesítmény és kényelem, valamint a jármű mintegy 600 km-es hatótávolságának támogatása érdekében optimalizált gördülési ellenállás mellett valósul meg.

A teljesítménybeli előnyöket az ENLITEN technológia teszi lehetővé. Az ENLITEN a Bridgestone következő generációs technológiai platformja, amelyet úgy terveztek, hogy kompromisszumok nélküli teljesítményt nyújtson, a fenntarthatósági jellemzők fokozására összpontosítva. A Macan Electric Európában kifejlesztett és gyártott egyedi abroncsai világszerte hatféle változatban, 20”, 21” és 22” méretben kaphatók.

Egész évben a Porsche Panamera vezetőinek szolgálatában

A Bridgestone két egyedi abroncsmegoldással látta el a Porsche Panamera vezetőit, hogy javítsa járművük teljesítményét az évszakok során. A Porsche Panamera 21”-os Bridgestone Potenza Sport abroncsait az ENLITEN technológiával tervezték, amely fokozza a jármű sportos vezetési tulajdonságait és a vezető kényelmét, miközben alacsony gördülési ellenállást biztosít az energiahatékonyság érdekében. A Panamera testre szabott Potenza Sport ultranagy teljesítményű abroncsai olyan mintázati kialakítást és anyagösszetételt alkalmaznak, amely maximalizálja a száraz és nedves útfelületen nyújtott kezelhetőséget, valamint a nagy sebességnél mutatott teljesítményt.

A Panamera egyedi 20”-os Bridgestone Blizzak LM005 téli felszerelése olyan mintázatot alkalmaz, amely maximalizálja a száraz, nedves és havas kezelhetőséget és fokozza az autó teljesítményét téli körülmények között. Mindezeket az egyedi tervezésű abroncsokat Európában tervezik és gyártják.

Valódi hatás, virtuálisan kifejlesztve

Mindkét projekt fejlesztése során a Bridgestone innovatív virtuális gumiabroncs-fejlesztési technológiáját alkalmazták. A technológia javítja a fejlesztési folyamat hatékonyságát és fenntarthatóságát – a gyári első szerelések fejlesztési szakaszában a nyersanyagfogyasztás és a CO2-kibocsátás akár 60 százalékos csökkenését is eredményezi.

A Bridgestone virtuális abroncsfejlesztése kulcsfontosságú volt a Porsche Macan Electric és a Panamera esetében a Porsche által támasztott követelmények elérésében. A technológiát különösen a testre szabott gumiabroncsok száraz fékezési képességeinek javítására és a járművek fékrendszeréhez való megfelelő illeszkedés biztosítására használták. A virtuális abroncsfejlesztés hozzájárult ahhoz, hogy a Macan Electric dinamikus, sportos viselkedése párosuljon a SUV elektromos jármű nagy tömegével és nyomatékával, és így nagy sebességnél is magas szintű stabilitást biztosítson.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Ipar

Önvezető könnyű páncélvédettségű járművet fejlesztett a Széchenyi István Egyetem és a Gamma Zrt.

Könnyű páncélvédettségű terepjáró bázisjárműre fejlesztett önvezető és távirányítási funkciókat a győri Széchenyi István Egyetem.

A hazai védelmi ipar meghatározó gyártójával, a Gamma Zrt.-vel közösen kialakított, hazánkban egyedülálló katonai és katasztrófavédelmi célú járművet az intézmény Járműipari Kutatóközpontjának munkatársai látták el ön- és távvezérlést lehetővé tevő technológiával.

A Széchenyi István Egyetem és a budapesti Gamma Zrt., a hazai védelmi ipar meghatározó gyártója sikeresen valósította meg közös projektjét, egy ön- és távvezérlésre alkalmas könnyű páncélvédettségű terepjáró bázisjármű fejlesztését. Az újítás igénye a meglévő, ballisztikai védelemmel rendelkező járművek tesztelése, képességeinek demonstrálása során merült fel az élő erő védelme és az emberierőforrás-szükséglet csökkentése érdekében.

Az innovációs pályázat fő célkitűzése egy olyan nehéz terepi viszonyok között is alkalmazható, fizikai behatásokkal szemben védelmet nyújtó alapjármű megépítése volt, amely biztosítja az önvezérléshez szükséges rendszerintegráció alapvető feltételeit, valamint a többcélú alkalmazást. A megvalósult szimpla fülkés, félplatós, 4×4 hajtásképletű járműhöz illeszkedő, többfunkciós feladatellátást támogató cserefelépítmény-rendszert is kidolgoztak a szakemberek, amely lehetővé teszi a különböző felhasználói igényeknek megfelelő, különleges szakmai képességekkel rendelkező felépítmények fejlesztését.

„Először azon dolgoztunk, hogy a jármű mozgása, így a pedálrendszer és a kormány távolról is irányítható legyen. Ebbe a munkába az egyetem Digitális Fejlesztési Központja is bekapcsolódott, hogy zökkenőmentesen, rövid reakcióidővel működjön a kamerakép átvitele, amihez 5G- és wifihálózatot használtunk” – vázolta fel Kőrös Péter, a Széchenyi István Egyetem Járműipari Kutatóközpontjának (JKK) Autonóm Közlekedési Rendszerek operatív vezetője. Kiemelte, hogy a távvezérlés kezelői felületét, irányítói programjait és a digitális műszerfallal ellátott operátori állást mind a központ munkatársai valósították meg.

A szakember elárulta, hogy az autonóm működési mechanizmus beépítése nem volt újdonság a kollégáknak, hiszen a JKK egyik fő kutatási profilját az önvezető járművek adják. „Az egyetlen ismeretlen tényező a méret volt, hiszen 16-18 tonnás páncélozott járműre még nem fejlesztettünk ilyen funkciót” – fejtette ki. „Ebben az irányítási formában GPS-technológia segítségével előre felmérjük a bejárandó terepet, amelyen a jármű utána önállóan végig tud menni. Ha bármilyen akadály kerül az útjába, akkor a jármű vagy megáll, vagy kikerülő manővert végez el attól függően, hogy mit programoztunk be neki” – részletezte Kőrös Péter.

Eredetileg határvédelmi és felderítő funkciók ellátására alkalmas jármű kidolgozása volt a fő fókusz, de azóta már számos más területről – például tűzoltóságról – is érdeklődtek az innováció iránt. „A szenzorokat és a távközléshez szükséges eszközöket a járműtestre szereltük fel, a hátsó felépítmény pedig cserélhető, ezért bármilyen funkciót elláthat a mérésektől a mentéseken át a hadi alkalmazásig. Az autonóm és távvezérlés pedig Magyarországon egyedülálló módon funkciótól és felépítménytől függetlenül működik” – húzta alá a mérnök. A céggel történő együttműködésről elmondta: „Szakmailag és emberileg is kiváló csapat dolgozott a projekten. A fejlesztés nem valósulhatott volna meg Ocskay Gábor, a Gamma Zrt. Különleges Jármű Divíziójának egykori vezetője nélkül, aki sajnos a közös munka végeredményét már nem élhette meg.”

A konzorciumi tagok a projekt során a Gamma Zrt. Komondor járműcsaládjának hatodik, új típusát (RDO-3927) alkották meg. Dr. Zsitnyányi Attila, a vállalat vezérigazgatója elmondta, a Széchenyi István Egyetemmel sikerre vitt pályázat további fejlesztéseket is inspirált, a távirányíthatóságot és az önvezető funkciót pedig akár más járműveikre is kiterjesztenék.

„Magyarország egyetlen könnyű páncélvédettségű bázisjármű-fejlesztőjének és -gyártójának lenni komoly felelősséggel jár, ezért nyitottan állunk az olyan jövőbe mutató kutatási együttműködésekhez, mint amilyen a győri egyetemmel is megvalósult. A projekten dolgozó kutatóközpont, illetve az egyetem vezetésének hozzáállását, munkabírását már a pályázat készítése során csodáltam. Kiváló munkát végeztek végig, hihetetlenül rövid reakcióidőkkel. Öröm volt velük együtt dolgozni” – jelentette ki a vezérigazgató. Hozzátette: a kiváló tapasztalatoknak köszönhetően a jövőben is folytatnák a partnerséget az intézménnyel.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading

Mozgásban

A HUN-REN SZTAKI kutatócsapata önvezető járműveket tanított biztonságos manőverezésre

Egy 2022-ben indult, magyar-vietnámi közös, kutatási projektben hibrid tanulási módszerrel biztonságos vészhelyzeti manőverezésre tanítottak önvezető járműveket a HUN-REN SZTAKI-nál.

A Vészhelyzeti pályatervezés kooperálni képes autonóm járművek számára című programra három éve 69 546 489 forintnyi, száz százalékban vissza nem térintendő támogatást nyert el a HUN-REN SZTAKI nevében pályázó, Gáspár Péter professzor által vezetett kutatócsoport. A programban kezdetektől fogva közreműködtek a vietnámi Közlekedési és Kommunikációs Egyetem (UTC) kutatói is. A Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH) által támogatott 2019-2.1.12-TÉT_VN-2020-00003 azonosító számú projekt kitűzött feladatai között szerepelt egy olyan irányítási rendszer kidolgozása, mellyel az egymással és a környezeti elemekkel is kommunikáló autonóm jármű vészhelyzet esetén biztonságos elkerülő manőverezést tud végrehajtani. A projekt soárn mindezt nem csak a szimulációs térben, hanem valós környezetben is  kipróbálhatták a kutatók, a zalaegerszegi ZalaZONE tesztpályán egy fejlesztési célokra átépített Lexus RX 450h típusú önvezető járművön .

A gépjárművek menetstabilitásának megőrzése régóta kutatott téma az irányításelméletben. A jelenleg forgalomban lévő rendszerek a járművezetőt támogatva avatkoznak be, amennyiben a jármű mozgásállapota megköveteli. Ezek a rendszerek a jármű belső állapotváltozóit felhasználva, klasszikus irányítási módszerekkel, elsősorban a kerékfékeket aktuálva stabilizálják a járművet egy esetleges megcsúszás során. Az egyre magasabb automatizáltsági szintű funkciók megkövetelik, hogy a jármű irányítórendszere képes legyen a környezet statikus és dinamikus objektumait is figyelembe véve megtervezni jármű trajektóriáját. Az ehhez szükséges környezetérzékelés alapját különböző elven működő rendszerek adják, mint például az ultrahang, a radar, illetve a lidar, esetleg a gépi látáson alapuló kamerás rendszerek. Ezen rendszerek információinak egységes kiértékelését egy magas szintű környezetérzékelő rendszer végzi, amelyre alapozva az optimális járműpálya meghatározható az autonóm jármű számára.

A napjainkban egyre inkább kutatási fókuszba kerülő autonóm járművek fejlesztésének egyik sarokköve, hogy a jármű irányítórendszere képes legyen a környezet statikus –  mint amilyen egy jelzőlámpa – és dinamikus,  – mint például egy járókelő – objektumait is figyelembe véve megtervezni jármű pályáját. A jármű mozgási pályájának tervezése tulajdonképpen egy optimalizálási probléma megoldása, melynek során mindig figyelembe kell venni a trajektória dinamikai megvalósíthatóságát, azaz a menetstabilitását garantálását.

„A kutatás célja olyan módszerek kifejlesztése volt, amelyek segítségével az autonóm járművek vészhelyzeti manővereket tudnak végrehajtani gépi tanulás alkalmazásával. Ezt egy valós vészhelyzeti szituációban teszteltük, hogy lássuk, hogyan működik a gyakorlatban”

– mondta Gáspár Péter, a kutatás vezetője.

„A kutatás eredményeként olyan irányítórendszert dolgoztunk ki, ami a gépi tanulás és a hagyományos irányítástechnikai megoldások kombinációjára épül. Ez a rendszer képes figyelembe venni a környezeti információkat, és biztosítani a jármű biztonságos pályájának megtervezését és végrehajtását. A rendszer felső szintje egy olyan döntéshozatali és pályatervezési folyamat, amely megerősítéses tanulásra épít, míg az alsó szint a tervezett pálya gyors értékelésére szolgál. Itt a legfontosabb tényező a dinamikai megvalósíthatóság, amely figyelembe veszi például a beavatkozókra vonatkozó korlátozásokat és a jármű menetstabilitását”

fejtette ki részletesen a kutató Professzor.

A kutatás során a gépi tanulásra épülő irányítást úgy hangolták, hogy figyelembe vegye a hagyományos irányítástechnikai módszerek robusztusságát is. „Ennek a munkának köszönhetően az autonóm jármű képes megőrizni a stabilitását akkor is, ha váratlan változások lépnek fel a környezetben vagy a jármű dinamikájában” – egészítette ki Mihály András, a projekten dolgozó kutató, majd hozzátette:

A kutatásban kifejlesztett vészhelyzeti pályatervezési és járműirányítási megoldásokat az automatizált, felszerelt Lexus RX 450h tesztjárművön teszteltéük a ZalaZone tesztpályán, különböző vészhelyzeti manőverek végrehajtásával.”

„A projekt során egy kísérleti fejlesztés zajlott, amelyben a járműdinamikát, a szenzoradatok egyesítését és a gépi tanulással támogatott járműirányítást kombinálják, mindeközben figyelembe veszik a járműipari fejlesztési folyamatokat is”

összegezte Gáspár Péter, a kutatás vezetője.


További friss híreket talál az IoTmagazin főoldalán! Csatlakozzon hozzánk a Facebookon is!

Continue Reading
Advertisement
Advertisement
Advertisement Hirdetés

Facebook

Advertisement Hirdetés
Advertisement Hirdetés

Ajánljuk

Friss